JCS Vol. 1 No. 6 May - June 2006

" Enhanced Parallel Implementation of Backpropagation
Algorithm for Biomedical Classification problems

T. Hamsapriya’, S.Sumathi?, S.N.Sivanandam®

ABSTRACT

Multilayer Perceptron (MLP) with BackPropagation
learning algorithm is effective in solving a wide range of
bio-medical classification problems. In this paper, the
MLP network’ trained with backpropagation algorithm
is implemented on a cluster of workstations using MPI
for increased computational speed aﬁd effective resource
utilization. The proposed work combines data session
and training set parallelism to improve the convergence
rate and efficiency. This work uses the standard
enhancement techniques like momentum factor, adaptive
learning rate and adaptive learning rate with momentum
factor combined with the standard gradient descent
algorithm, The performance of parallel backpropagation
algorithm is evaluated for the liver disorder diagnosis
and heart disease diagnosis applications. Experimental
performance shows that the proposed parallel algorithm
has better speedup than the sequential algorithm.

Keywords: Backpropagation algorithm, Data
parallelism, training session parallelism, Adaptive-

learning rate, Momenturmn, Message passing interface.

'Department of CSE, PSG College of Technology,
Coimbatore, India.

2Dc}?artm,cnt of EEE, PSG College of Technology,
Coimbatore, India.

. 3Deparf:me_nt of Computer Science and Engineering, PSG
College of Technology, Coimbatore, India.

E-mail : mp_psg@rediffmail.com'

479

1. INTRODUCTION

Artificial Neural networks has emerged as a powerful
tool for solving various classification problems like heart
disease diagnosis, hepatitis, lung disease, cancef
detection, liver disease, blood disorders etc. However
training these networks is difficult and time consuming,
The performance of training algorithms can be improved
by introducing parallelism. Parallel processing
architectures are unavailable and are very expensive if
available. But this barrier can be overcome by the
availability of parallel libraries as MPI (Message passing
Interface) for communication in a network of

heterogeneous /homogeneous workstations.

Of the many Neural Network architectures proposed,
Multilayer Perceptron with Backpropagation learning
algorithm is found to be effective for biomedical
applications. This algorithm is computation intensive and
hence is an ideal candidate for parallel formulation. Also,
it takes a great deal of time to converge to an acceptable
solution. This paper discusses the parallel implementation
of the Backpropagation learning algorithm with various
enhancements to speedup convergence and to maintain

generalized performance.

Section 2 discusses the neural parallel computing and
parallelization of feed forward networks. Message
passing interface is explained in Section 3. Section 4
describes the proposed work. Standard Backpropagation
algorithm and various enhancements are analyzed in
Section 5. Section 6 discusses the results of the

experimentation.

JCS Vol 1 No. 6§ May - June 2006

section 7 summarizes the efficacy of the speedup

techniques and presents further directions for research.

2. NEURAL PARALLEL COMPUTING
Parallel computer architectures can be divided into two

main categories; SIMD (Single Instruction Multiple Data

stream) and MIMD (Multiple Instruction Multiple Data

stream). In MIMD, the architecture is classified as tightly

coupled systems and loosely coupled systems based on
the degree of interaction among the processors.
Two different programming paradigms have evolved
from the architectural models:
e Shared memory programming using constructs as
semaphores, monitors and buffers (associated with
tightly coupled systems)
Message passing programming using explicit
message-passing primitives to communicate and
synchronize (associated with loosely coupled
systems) |
The performance of parallel algorithms can be measured
_ using speedup. Speedup is defined as the ratio between
the elapsed time using m processors for the parallel
algorithm and the elapsed time completing the same task

using the sequential algorithm with one processor.

2.1 Parallelization of feed-forward neural networks
The basic terminology in parallelization of BP neural

networks is

Training set: It consists of a number of training patterns,
each given by an input vector and the corresponding

output vector.

Network size: A network comprises N, input units, N,
hidden units and N_ output units .In short a network is

represented as N, x N, x N.

‘Training Iteration: It denotes one representation of the

whole training set.

480

2,11 ‘Weight updating strategies

Learning by pattern {/bp) updates the weights after each
training pattern has been presented.

Learning by block (/bb) updates the weights after a -
subset of the training pattern has been presented.
Leamning by epoch {/be) updates the weights after all
patterns have been presented (i.e.; one training

iteration).
2.1.2 Weight update.interval

The number of training patterns that is presented between
weight updates is termed p. For ibp, p=1, while for lbe
p=P, where P is the number of training patterns in the
training set.

The BP algorithm reveals four different kinds of

patallelism as described below.

o Training session parailelism staris training session
with different initial training parameters on different
processing elements.

Training set parallelism splits the training set across
the processing elements. Each element has a local
copy of the complete weight matrix and accumulates
weight change values for the given training patterns.

The weights are updated using /bb/lbe.

Pipelining pipelines the training patterns between the
layers, i.e., hidden and output layer on different
processors. While the output layer processor
calculates output and error values for the present
training pattern, the hidden layer processor processes
the next training pattern. The forward and backward
phase may also be parallelized in a pipeline.
Pipelining requires a delayed weight update or /bd/
lbe,

Node parallelism, the neurons within a layer is
computed i parallel (named neuron parallelism). In

this method, the weights can be updated using Ihp,

Enhanced Parailel implementation of Backpropagation

Algorithm for Biomedical Classificaiion problems

In this paper, training session parallelism is employed to
determine the optimal values of initial weights and
learning rate. A copy of the optimal values are loaded on
to the processors and the network is trained using training
set parallelisim, in which training vectors are partitioned
across the workstaﬁons and the overall training time is

reduced.
2.2 Training Session Parallelism

In training session parallelism, multiple epochs are run,
each on its own processing element (PE) simultaneously.
The networks are started with different random initial
weight values, learning rate, momentum and number of
neurons in the hidden layer. Different learning rates allow
a training session on any PE to escape a local minimum

that the network would otherwise settle in.

Initial Set X Initial Set Y Initial Set Z

Figure 1 Data session Parallelism

Figure 1 illustrates that all the processing elements have
a copy of the same network initialized with different

parameters for the same set of training vectors,

'2.3 Training Set Parallelism
Each PE has a Jocal copy of the complete weight matrices
and ‘accumulates weight change values for the given
subset of training patterns. Since thé neural network
weights must be consistent across all the PEs, the weights
are glbbally updated (learning by bleck/epoch).
Subset 1 Subset2 Subset3

Figure 2 Training set Parallelism

481

In this paper, learning by epoch strategy is used for weight
updation to minimize the communication delay. The
weight change values of each PE are summed and used
to update the local weight matrices. Figure 2 illustrates
the training set parallelism where the training set is
partitioned and the subsets arc distributed across the

processing elements.

3 MESSAGE PassING INTERFACE (MPI)

Fast learning mechanisms of neural network models have
been implemented over multiprocessors on board, or in
tightly coupled multiprocessor systems. These systems
could be highly expensive or need good programming
skill for specific purposes. Various training and learning
algorithms for SIMD and MIMD implementation of
backpropagation and other neural networks are diséussed
in [4] and [5]. As the LAN-based fast clusters of PC’s or
workstations over communication networks havé become
commonplace, it could be worthwhile to share the
computing power among hardware if necessary. In this
proposed scheme, the parallel backpropagation algorithm
is implemented on a cluster of workstations using MPL
MPI is the de facto standard for explicit message passing
on Beowulf-class supercomputers. Each workstation can
communicate with other workstations through a MPI

library function.

4 PROPOSED WORK

The parallel backpropagation neural network is
implemented using MPI. It combines both data session
parallelism and training set parallelism. In data session
parallelism, different initial parameters like the initial
weights and the learning rate are assigned to each
workstation and the network is trained for the same

sample training patterns simultaneously. The root

" JCS Vol. 1 No. 6 May - June 2006

processor compares the training time of each workstation
and finds an efficient parameter set and distributes it to
all workstations. A flowchart for data session and training

set parallelism is shown in Figure 3.

Training set parallelism involves dividing and distributing
the subsets of patterns to processors, after training and
gathering the set of weight matrices from the processors.
The number of epochs for learning in each processor
can vary. The training is terminated when the total error
falls below a given error. It is impé;rtant to equally
distribute a subset of patterns to each processor. If a
processor lea‘rns with the subset of unbalanced and
distributed patterns, the training could be useless and it

may not give an optimal solution.

"After the learning phase in each processor, the root
processor gathers the set of weight matrices from all
processors and averages them. After initializing the
network with the new set of weight matrices, each
processor starts to relearn the set of weights. In the latter
case, the relearning time can be reduced if the set of
weight from participant processors is adaptive to the

subset of pattems.

5 STANDARD BACKPROPAGATION ALGORITHM AND ITS

ENHANCEMENTS

The backpropagation algorithm consists of two phases:
A forwgrd phase in which an activity pattern is applied
to the input nodes of the network and its effect,
propagates through the network layer by layer. Training

a backpropagation network involves the following stages.

o Feedforward of the input {raining pattern.
o Backpropagation of the associated error.

e Weight adjustment

482

During feedforward, each input unit X, receives an input
signal and broadcasts this signal to each of the hidden
units Zl....Zp. Each hidden umnit then computes its
activation and sends its signals 7, to each output unit, Each
output unit Y, computes its activation ¥, to.form the
response of the net for the given input pattern.
The net input to ZJ is denoted by Z_inj:
Z_inj =¥ x Vi

i

The output signal (activation) of Z is denoted by z;:
2= f(Z_in),
The net input to Y, is denoted by y_in:
y_in = Z_zj Wy,
J

—

[Fork speeified no. ufp:occssa_}

v
Initialize the parnmelers
fom initial setn

L]

L]
Y ']
laitialize the parameters Initialize the parameters
Fomw initial set § from izitial set 2

.

¥
Train the sample tmining Train the sample Train the samp e tining
pattems and caiculalz the trzining patierns and pattems and caleulate the
training fime caleutats the mRining time
Inining time
Compaze the time wkenby each]
processor and lnd the ¢Micient 5oL
¥ ¥ KL ;
Store the efficient Store the cfficicnt Store the efficient
set in system | selin system2 sel in system n

v

Temminaic the processes

~ ¥

I Fork the specified ne ofProcesses]

l Distribute the Trining set 1o each Process based on their r.mkl

Y

T !
h
Train the net and Train the net and Train the net and
accumulate the local accurmulate the local accumulate the local
weight update weight update weight update
y
Coliect the other Cellect the other Colicet the ather
processes local weight processes local processes local
update. weight updale weight update.
Update the wci@m globatly 1
Check for convergence

[Store the final Weights

Figure 3 Flowchart for parallelism

]

Enhanced Paralie! Implemeniation of Backpropagation

Algorithm for Biomedical Classification problems

The output signal (activation) of Y, is denoted by y,:
y, = f(y_in)),

During training, each output unit compares its'computed
a}ctivation y, with its target values t,_to determine the
associated error for that pattern with that unit. Based on
this error, the factor 5, (k = 1 ...m) is computed. &, is
used to distribute the error at output unit Y, back to all
units in the previous layer (the hidden units connected
to'Y)). Itis also used (later) to update the weights between
the output and the hidden layer. In a similar manner, the
factor SJ. (j=1... p) is computed for each hidden unit Z,
‘Tt is not necessary to propagate the error back to the input
layer, but 8j is used to update the weights between the
hidden layer and the input layer.

Error information from each output unit:

5, = (t,— ¥) f*(y_in),
Its weight update is calculated as follows:

Aw, =a 8, z,
Delta inputs from each hidden unit:

m
S_inj =38 W
k=1

multiplies by the derivative of its activation function to
calculate its error information term.

&, = &_in,f*(z_in),
Its_weight update is calculated as follows:

Avij. =q 5]. X,
After all the & factors have been determined, the weights
for all layers are adjusted simultaneously. The adjustment
to the weight W, (from hidden unit Z, to output umnit Y,)
is based on the factor §,_and the activation z, of the hidden
unit Z, of the hidden unit Z, The adjustment to the weight
v (fr_pm input unit X, to hidden Z}.) is based on the factor
8, and the activation xi of the input unit.
Each output unit (¥, k=
=0...p}

1...m} updates its weights (j

483

wm(new) = wjk(old) + AW,
Each hidden unit (Z, j = 1...p) updates its weights (i =
0..,n):

vij(new) = vﬁ(old) + AV,
5.1 Enhancements

The performance of the backpropagation algorithm can
be improved in some situations. The enhancement
techniques discussed below changes the weight update
procedure to improve biological plausibility and

computational power. - '
5.1.1 Backpropagation with Momentum

In backpropagation with momentum, the weight change
is in a direction based on the current gradient and the
previous gradient. This scheme is a modification of
gradient descent whose advantages arise chiefly when
some training data are very different from the majority
of the data (and possibly even incorrect). Convergence
is sometimes faster if a momentum term is added o the
weight update formula. In this model, new weights for
training step t+1 are based on the weights at the training

step tand t-1.

The weight updation for backpropagation network with
momentum factor is given as
Awﬁc(tﬂ) =ad, ztu Awﬂ‘(t),
and
Avrl) =« 8%, +p Avi(D),
where the momentum parameter p is constrained to be

in the range from 0 to 1, exclusive of the end points.

Momentum factor allows the net to make reasonably large
weight adjustments as long as the corrections are in the
same general direction for several patterns, while using
a smaller learning rate to prevent a large response to the
error from any of the training pattern. It also reduces the

likelihood that the net will find weights that are local,

JC§ Vol. 1 No. 6 May - June 2004

but not global, minimum. When using momentum, the
net is proceeding not in the direction of the gradient, but
in the direction of a combination of the current gradient

and the previous direction of weight correction.
5.1.2Backpropagation with adapftive learning rate

This model 'improves the speed of training for
backpropagation by changing the learning rate during
training. Each weight has its own learning rate. Two
_heuristics are used to determine the appropriafe changes
in the learning rate for each weight. If the weight change
is in the same direction (increase or decrease) for several
time .steps, the learning rate for that weight should be
increased. The weight change wiil be in the same
direction if the partial derivative of the error with respect
to that weight has the same sign for several time steps.
However if the direction of the weight change (i.e., sign
of the partial derivative) alternates, the learning rate
should be decreased. The delta-bar-delta rule consists of

weight update rule and a leaming rate update rule.
For each cutput unit “delta” is defined as,
A=~ 8, z;
and for each hidden unit:
A= -8 %
1 11
The delta-bar-delta rule uses a combination of

information about the current and past derivative to form

a “delta-bar” for each output unit:

A0 = (1- B AD + B A (t-1);
and for each hidden unit:

A0 = (1-B) AL + BA1;
The user specifies the value of the parameter f (0 < 3
<1).
The heuristic that the learning rate should be increased,
if the weight changes are in the same direction on

successive steps, is implemented by increasing the

learning rate (by a constant amount} if A’ij(t-l) and A,()

484

are in the same sign. The learning rate is decreased if
A’ (t-1) and A(t) are of the opposite sign,
The new learning rate is given by

ajk(t) +g if A’ij(t-l) Ay{t) >0

Si(t+1) = < (1-y) oyl if Ay(t-1) Ay(t) <0

otherwise

aft)

5.1.3 Backpropagation with Momentum and adaptive

learning rate

The learning rate parameter is used to determine how
fast the BP method converges to the minirmun solution,
A large learning rate leads to bigger step and faster
convergence. But if the learning rate is too large, the
algorithm will become unstable. On the other hand, if
the [earning rate is too small, the algorithm will take long
time to converge. To speed up the convergence time and
to avoid struck to the local minimum, the weight vector
is adjusted with a varying /adaptive learning rate in the

gradient descent with momentum.

6. REsuLts AND Discussion

Two benchmark applications were chosen to evaluate the
performance of various enhancement strategies. The
models were tested for liver disorder diagnosis (LDD}

and heart disease diagnosis (HDD) applications.

In the training session parallelism, the master node
initially assigns different parameter sets to different
workstations. All the workstations have the same copy
of the network architecture. The same set of training
patterns are given to all the processors. The master
collects the training time from all the workstations, The
pararﬁefer set of the workstation with the minimum
training time is chosen as the optimal parameter set. The

parameters of all the workstations are cleared.

Enhanced Parallel implementation of Backpropagation

Algoriihm for Biomedical Classification problems

'The master passes the optimal parameter set and the
network architecture to all the workstations. In training
set parallelism, the master partitions the training set
equally among the workstations. The weights are updated
locally in each workstation for the given subset of training
set. The master gathers the set of weight matrices from
all processors and computes the average. The weights
are globally updated on all the workstations and are sent
to the master.

The backpropagation learning was experimented with the
standard gradient descent learning enha;lced with
mofnentum, adaptive learning rate and adaptive learning
with momentum. The performance of the parallel
implementation was evaluated using speedup for various

‘enhancements. Speedup describes how the performance

- Of a system changes with the enhancements/

improvements made to the system.
6.1 Application -I Liver Disease Diagnosis

Th:eg processors were used to test this application. Each
processor has a copy of the same network architecture.
The networks are trained with different initial training
parameters on different processors. Table 1 shows the
fraining time taken by three parametér sets in the three
processérs. The parameter set3 consumes minimum
amount of training time and is considered as the optimal
parameter set for training set parallelism as illustrated in
Figure 4.

Table 1 Training fime for each initial parameter set

in LDD,
. Time
Parameter set
(msec)
Setl 1250
Set2 457
Set 3 220

The optimal parameter set has 18 hidden neurons,

learning rate as 0.3, error rate as 0.1and the momentum

485

as 0.7.The training repetition was limited to 35000
epochs.

Training Session Parallelism - LDD

-

i1 1500

1t

':Eww

1

II

” 00 g Execution
CHE Time

2 Sal3
Parome

Figure 4 Performance of different initial parameters for
LDD.

In the next stage, each processor has a local copy of the
backpropagation network architecture and the same
parameter set. The training set is partitioned across the
network, Each processor maintains a local copy of the
complete weight matrices and accurnulates weight change
values for the given training patterns. The neural network
weights must be consistent across all the processors and
thus weights are updated in a global operation (learning
by block/epoch). The weight change values of each
processor is summed and used to update the local weights.
The experiment is repeated with enhancements like
momenturn, adaptive leaming rate and momentum with

adaptive learning rate and the training time is determined,

Figure 5 and Table 2 show the performance 6f the
standard backpropagation network with and = without
enhancements. Backpropagation network with adaptive
learning rate and adaptive learning rate combined with
momentum yields a better performance compared with

their counterparts.

Training Set Parallelism-LDD
] L]
| Y, T
:' h —F—Sid. BP
£
1 I a0 —e— BPFMom
e
E o —&— BPADL
L4 4
1 2 3 Ho.eof P::_._BP,AU‘*
Mom

Figure 5 Perfermance analysis for LDD’

JC8Vol. 1 No. 6 May -June 2006

- Figure 6 illustrates thét the speedup improves with the
parallel implementation of the Backpropagation
algorithm for various enhancements. The effect is
prc;minent for the standard Backpropagation with
adaptive learning rate and momentum. Only three
processors were used for parallel implementation because
the data was too small for .the convergence to 0CCur,

cdmpared to the complexity of the problem.

Speed up vs No. of processors-L.DD

Q,4
=) ——2
gz,# —#—3
g1
&g

o g wt
v o R
+ ?.‘a' E I t

Figure 6 Speedup Analysis for LDD

Table 2 Performance of the models- LDD

Ne. of Pracessors Speedup
Enhancements 1 2 3 2 3
Std. BP 483 377 323 128 | 149
BP/mom 392 | 2925 243.5 1.34 | 1.61
BR/ADL 362 | 2478 | 20357 | 138 | 1.68

BP/ADLA+ mom | 299 270 250 227 | 29

6.2 Application-II Heart Disease diagnosis

The dataset for the heart disease diagnosis is collected
from the Cleveland database, UCI MLRepository.htm!
[7]. It has 6 input attributes and two output classes. The
network is trained with 303 train.ing vectors. The
experiment js conducted with one hidden layer consistiﬁg
of 20 hidden neuroas for both the applications.

Initially, the parameter set is chosen for the
backpropagation network using training session

parallelism. Table 3 and Figure 7 show that parameter

set2 is the ideal candidate for this application :as it
consumes the minimum amount of training time. Each
workstation is supplied with a local copy of the parameter
set and the architecture. In this application the input layer
consists of 13 nodes and the output layer consists of 2

nodes. The experiment is repeated with the following
enhancements to the backpropagation network.

@ Standard Backpropagation {Std, BP)

= BP with momentum (BP/Mom),

e DBP-with adaptive leaming rate (BP/ADL),

¢ BP with both momentum and adaptive learning rate

(BP/ADL+ Mom).

Table 3 Training time for each initial parameter set

in HDD.

Time
Parameter set
{msec)
Setl 27
_Set 2 18
Set3 460

Training session paraltelism - HDD

@ Execution
time

Earnline lae Jmenaf
g 8888

o

Parameter ot

Figure 7 Time comparison of different initial
parameters for HDD.

Comparative study shown in Table 4 and fipure 8
illustrates that backpropagation with adaptive Iearning
tate performs better in a multiprocessor environment for
this application. In a uniprocessor system
backpropagation with adaptivé learning rate and
momentum performs well when compared with other

enhancements.

Erhanced Parallel Implementation of Backpropagation

Algorithm for Biomedical Classification problems

Table 4 Time taken by eack model for HDD.

No. of Processors Speedup
Enhancements 1 2 3 2 3
Std. BP 335 261 | 221 | 1.28 | 1.52
BP/mom 87.3 699 { 58 1.24 | 1.50
BPF/ADL 79 637 | 562 | 124 3 141
BP/ADLA mom 724 387 1 33t | 187 | 218

Training set parallelism - HDD

—g@— Std. BP
—g— BP/Mom

B e o e e e

—&— BRYADL
h?o. of Pro

—¢-— BPADL+Morr

Figure 8 Performance analysis for HDD

Speedup vs No. of Processors- HDD

——2
—f—3

Enhancoments

Figure 9 Speedup Analysis for HDD

Figure 9 shows a remarkable speedup in the performance

of the network by increasing the number for processors
with various enhancements. The maximum number of
" processors was limited to three as the number of training
vectors was less. The training time for the heart disease
diagnosis is increasing with the number of processors.
This is because the communication delay is higher than
converging time. This may be avoided for applications
vﬁth very large training set. BP with momentum and BP
with adaptive learning avoid local minima and took less

time compared to standard BP model.

487

7. Conclusion

Despite its irtherently parallel nature, an efficient parallel
implementation of the backpropagation algorithm on a
network of workstationé performs better than its
sequential counterpart. The training time of a BP
algorithm also depends on initial parameters and initial
weight values. Training session parallelism selects the
optimal initial parameter values and decreases the training
time. Training set parallelism further reduces the training
time by dividing the training set across the workstations.
The experimental results illustrates the marked reduction
in the training time of the standard backpropagation
network with momentum, adaptive learning rate,
momentum with adaptive learning rate results show that
adaptive learning rate with momentum, take very less
training time and provide better performance, for the
biomedical applications compared to other models. The
performance of the backpropagation evaluated using
speedup illustfates the efficacy of the parallel
implementation and enhancements. The work can be
extended further by studying the effect of increasing the
hidden layers and varying the number of neurons in the
hidden layer.

REFERENCES

[1] Jim Torresen and Shinji Tomita, “4 review of Farallel
Implementations of Backpropagation Neural
Networks”, IEEE CS Press, 1998

[2] Cheng-Chang Jeng , [-Ching Yang, “Practical
Implementation of Back-Propagation Networks in a
low-Cosi PC Cluster”, Neural Information
Processing-Letters and Reviews, Vol.4, No.3, pp33-
37 ,September 2004,

[3] N. Sundararajan and P. Saratchandran, “A Review

of Parallel Implementations of Backpropagation

JCSVol. 1No. 6 May - June 2006

" Neural Networks Parallel Architectures for Artificial
Neural Networks”, IEEE CS Press, 1998.

[4] Timothly J. Rademacher and James E, Lumpp,
“High-Performance Simulation of Neural
Networks"”, Proceedings of the 1997 IEEE-

~ Aerospace Conference, Feb. 1997.

[5]1 A. Petrowski, G. Dreyfus, and C. Girault,
“Performance analysis of «a piperlined
backpropagation parallel algorithm”, IEEE

Transactions on Neural Networks Nm-r. 1993,

[6] S.L.Hungand H.Adeli, “Parallel backpropagation
learning algorithms on Cray Y-MP38/864
supercomputer”’, Neuro-computing, 5:287—302,

- Nov 1993,

[7] Ernest Istook, Tony Martinez, “Improved
Backpropagation learning in neural networks with
windowed momentum”, In International journal of
Neural systems, vol.no.12, No.3&4,pp303-318.

{81 Swuresh, Omkar and Mani, “Paraliel Implementation
of Backpropagation Algorithm in network of
workstations” IEEE Transactions on Parallel and
_Distr_ibuted Systems, Vol. 16, No.1, , pp 24-34, Jan

_ 2005.

[9] Udo Seiffert,
‘Massively Parallel Computer Hardware”
ESANN ’2002.].;roceedings -24.26 April 2002,ISBN
2-930307-02-1, pp 319-330.

CArtificial Neural Networks on

[10] Michael J.Quinn “Parailel Programming in C with

| .. MPI and OpenMP”, Tata McGraw-Hill Edition,
2003.

[11] Adang Suwandi Ahmad, Arief Zulianto,Eto Sanjaya,
“Design and Implem'entatz’on. of Parallel Batch
mode Neural Network on Parallel Virtual
Machine"”, Proceedings ,Industrial Electronic
Seminar, Graha Institut Teknologi Sepuluh

Nopember, Surabaya, October 27-28,1999.

[12] Manavendra Misra, “Parallel Environments for
Implementing Neural Networks”, Neural

Computing Surveys Vol 1, 48-60, 1997.

Auther’s Biegraphy
Ms T Hamsapriya received the ME degree

n Commumcatlon Systems from PSG
ollege of Technology She is currently
‘orking as an Assistant Professor,

Department of CSE PSGCT. Her research
interest includes Parallel and D:stnbuted Computing,
Evolutionary Computmg, Neural Networks and Data
Mining.She has pubhshed 10 teohmcaI papers in papers
in International, Nanoual Joumals and Conferences.

. Pr.5.Sumathi received the Ph.D degree in

| Computer Science Engineering from PSG
“ College of Technology, Bharathiar
University. She is currently working as an

Assistant Professor, Department of EEE,
PSGCT. Her research interest includes Genetic
Algorithms, Evolutionary Corputing, Neural Networks
and Data Mining, She has published 50 Technical papers
in International, National Journals and Conferences. He_:

has published 3 books.

DPr 8 N Sivanandam, received the PhD
degree in Electrical and Electronics
Engineering from Madras University,

B Chennai in 1982. He is currently serving as

the Professor and Head of the Computer Science and

.~Engineering Department, PSGCT, Coimbatore. His

research interest lie in the area of Control Systems, Neural

Networks, Genetic Algorithm, Digital Logic Design. He

~ has published 400 Technical papers in International,
National Journals and Conferences. He has published 7

books.

488

