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Trace Driven Simulation of GDSF# and Existing Caching Algorithms
for Internet Web Servers

13 B Patil, B.V. Pawar

ABSTRACT

Web caching is used to improve the performance of the
Internet Web servers., Document caching is used to
reduce the time it takes Web server to respond to client
requests by keeping and reusing Web objects that are
likely to be used in the near future in the main memory of
the Web server, and by reducing the volume of data
transfer between Web server and secondary storage. The
heart of a caching system is its page feplacement policy,
which needs to make good replacement decisions when
its cache is full and a new document needs to be stored.
The latest and most popular replacement policies like
GDSYF uée the file size, access frequency, and age in the

decision process.

The effectiveness of any replacement policy can be
evaluated using two metrics: hit ratio (HR) and byte hit
ratio (BHR). There is always a trade-off between HR and
BHR [1]. In this paper, using three different Web server
logs, we use trace driven analysis to evaluate the effects
of differeﬁt replacement policies on the performance of a
Web server, We propose a modification of GDSF policy,
GDSF#, which allows augmenting or weakening the impact
of size or frequency or both on HR and BHR. Our

simulation results show that our proposed replacement
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policy GDSF# gives close to perfect performance in both
the important metrics: HR and BHR.

Keywords: Web caching, replacement policy, hit ratio,

byte hit ratio, trace-driven simulation

1. INTRODUCTION

The enormous popularity of the World Wide Web has
caused a tremendous increase in network trafﬁé due to
http requests. This has given rise to problems like user;
perceived latency, Web server overload, and backbone
link congestion. Web caching is one of the ways to
alleviate these problems 1,2, 3,4,5,6,7,8,%,10, i1} Web
caches can be deployed throughout the Internet, from
browser caches, through prox;\; caches and backbone
caches, through reverse proxy caches, to the Web server

caches.

Tn our work, we use trace-driven simulation for evaluating
the performance of different caching policies for Internet
Web servers. Our study uses Web server traces from

three different sites on the Internet.

Cao and Irani have surveyed ten different policies and
proposed a new algorithm, Grgedy—Dual-Size {GDS) in
[5]. The GDS algorithm uses document size, cost, and
age in the replacement decision, and shows better
performance cormpared to previous caching algorithms. -
In [4] and [12), frequency ‘was incorporated in GDS,
resulting in Greedy-Dual-Size-Frequency (GDSF) and
Greedy-Dual-Frequency (GDF). While GDSF is atiributed
to having best hit ratio (HR), it having a modest byte hit
ratio (BHR). Conversely, GDF yields a best HR at the cost
of worst BHR [12].
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In this paper, we propose a new algorithm, called Greedy-
Dual-Size -Frequency # (GDSF #), which allows
augmenting or weakening the impact of size or frequency
or both on HR and BHR, We compare GDSF# with GDS
family algorithms like GDS(1), GDS(P), GDSF(1), GDSF(P).
Our simulation study shows that GDSF# gives close to
perfect performance in both the important metrics: HR

a.n_d BHR.

The remainder of this paper is organizeci as follows.
Section 2 introduces GDSF#, a new algorithm for Web
cache replacement. Section 3 describes the simulation
model for the experiment. Section 4 describes the
experimental design of our simulation while Section 5
presents the simulation results. We present our

conclusions in Section 6.
2. GDSF# Algorithm (Cur Proposed Algorithm)

In GDSE, the key value of document i is computed as

follows [4][12}:

H;=L+ (fiXc)/s;

The Inflation Factor L is updated for every evicted
document i to the priority of this document i. In this way,
L increases monotonically. However, the rate of increase
is very slow. If a faster mechanism for increasing L is
désigned, it will lead to a replacement algorithm with

features closure to LRU. We can apply similar reasoning

to and , If we augment the frequency by
5y f:

using o2, - 32,..., etc. instead of » then the impact of
S£5 1 fi P

frequency is more pronounced than that of size. Similarly,

ifweuse _ 0.1,

S;

5 0.2,..., etc. oruse log (s) instead of file
i

size s, then the impact of size is less than that of frequency
141

Extending this logic further, we propose an extension to
the GDSF, called GDSF#, where the key value of

document is computed as

H,=L+ (c xfil)/sia

where » and * are rational numbers. If we set » or " above
1, it augments the role of the corresponding parameter.
Conversely, if we set » or “below 1, it weakens the role of

the corresponding parameter.

Therefore, we present the GDSF# algorithm as shown

below:

begin

Initialize L = 0

Process each request document in turn:

let current requested document be §

if { is already in cache

H, =L+ (g Xfil)/si&

else

while there is not enough room in cache for p
begin

let L = min(gy J, for all i in cache
L

evict i such that Hz“= L

end

load { into cache

end
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3. SIMULATION MODEL FOR THE EXPERIMENT

In case of Web Servers, a very simple Web server is
assumed with a single-level file cache. When a request is
received by the Web ser'-ver, it Jooks for the requested file
in its file cache. A cache hit occurs if the copy of the
requested document is found in the file cache. If the
document is not found in the file cache (a cache miss),
the document must be retrieved from the local disk or
from the secondary storage. On getting the file, it stores
the copy in its file cache so that further requests to the
same document can be serviced from the cache. If the
cache is already full when a file needs to be stored, it

triggers a replacement policy.

Our model also assumes file-level caching. Only complete
documents are cached; when a file is added to the cache,'
the whole file is added, and when a file is removed from

the cache, the entire file is removed.

For simplicity, our simulation model completely ignores
the issues of cache consistency (i.¢., making sure that
the cache has the most up-to-date version of the
document, compared to the master copy version at the

original Web server, which may change at any ime).

Lastly, caching can only work with static files, dynamic
files that have become more and more popular within the

past few years, cannot be cached.
3.1 Workload Traces

In this study, logs from three different Web servers are
used: a Web server from an academic institute, Symbiosis
Institute of Management Studies, Pune; a Web server
from a manufacturing company, Thermax, Pune, and a
Web server for an E-Shopping site in UK,

www.wonderfulbuys.co.uk.
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4, ExPERIMENTAL DESIGN

This section describes the design of the performance
study of cache replacement policies. The discussion
begins with the factors and levels used for the simnuiation.
Next, we present the performance metrics used to evaluate
the performance of each replacement policy used in the
study. Lastly, we discuss other design issues regarding

the simulation study.

4,1 Factors and Levels

There are two main factors used in the in the trace-driven
simulation experiments: cache size and cache replacement
policy. This section describes cach of these factors and

the associated levels.

Cache Size

The first factor in this study is the size of the cache. For
the Web server logs, we have used seven levels from 1
MB to 64 MB, The upper bounds of cache size are chosen
to represent an infinite cache size for the respective traces,
An infinite cache is one that is so large that no file in the
given trace, once brought into the cache, need ever be
evicted. Tt allows us to determine the maxirmum achievable
cache hit ratio and byte hit ratio, and to determine the
performance of a smaller cache size to be compared to

that of an infinite cache.

Replacement Policy

In our research, we examine the following previously
proposed replacement policies: GDS(1), GDS(P), GDSE(1),
and GDSF(P). Our proposed policy GDSF# is also

examined and evaluated against these policies.

Greedy-Dual-Size (GDS): GDS (5] maintains for each
object a characteristic value H. A request for object i
(new request or hit) requires a recalculation of 4. H. is

calculated as




Karpagom JCS Vol. 2 Issue 3 Mar. - Apr. 2008

H:= L+ ¢;/s;

L is a running aging factor, which is initialized to zero, ¢;is
the cost to fetch object i from its origin server, and s, is
the size of object i. GDS chooses the object with the
smallest Hi-value. The value of this object is assigned to
;L. if cost is set to 1, it becomes GDS(1), and when cost is

setto p=2 + size/536, it becomes GDS(P).

Greedy-Dual-Size-Frequency (GDSF): GDSF [4] [12]

calculates /, as

H, =L+ (fiXe)/s;
1t takes into account frequency of reference in addition

to size. Similar to GDS, we have GDSF(1)} and GDSF(P).
4.2 Performance Metrics

The performance metrics used to evaluate the various
replacement policies used in this simulation are Hit Rate

and Byte Hit Rate.

Hit Rate (HR) Hit rate (HR) is the ratio of the number of

requests met in the cache to the total number of requests.

Byte Hit Rate (BHR) Byte hit rate (BHR) is concerned
with how many bytes are saved. This is the ratio of the
number of bytes satisfied from the cache to the total bytes

requested.

5, SimuLATiON RESULTS

This section presents the simulation results for

-comparison of different file caching strategies.

Section 5.1 gives the simulation results for the GDSF#

algorithm. Section 5.2 shows the results for Web servers.
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We show the simulation results of GDS(1), GDS(P),
GDSF(1), GDSF(P)., GDSF#(1), and GDSF#(P) for the Web
server traces for hit rate and byte hit rate. The graph for
Infinite indicates the performance for the Infinite cache

size.

FIFQ is chosen as a representative of strategies that do
not exploit any particular access pattern characteristics,
and hence its performance can be used to gauge the

benefits of exploiting any such characteristics.
5.1 Simulation Results for GDSF# Algorithm

Tn this section, we experiment with the various values of

»and ~ in the equation for computing key value,

— : ) &
Hi=L+ {(c; X f)/s;
to augment or weaken the impact of frequency and size in

GDSF#.
Effect of Augmenting Frequency in GDSF#

if we add frequency in the GDS to make it GDSE, 1t
improves BHR considerably and HR slightly. To check
whether we can further improve the performance, we set
A=2,5, 10 with § = 1 in the equation for H. Figure 1
shows a comparison of GDSF(1) and GDSF#(1) with A=
2, 5, 10 with 3 = 1 for the three Web server traces. The
results indicate that augmenting frequency in GDSF#
improves BHR in all the three traces but the improvement
comes at the cost of HR. Again, we find that with . =2, we
get the best results for BHR.
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Figure }: HR and BHR for GDSF# algorithm using Web server traces (A=2, 5, 10)
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Effect of De-Augmenting Size in GDSF#

We have seen that emphasizing frequency in GDSF#
results in improved BHR. Now let us check the effect of
de-augmenting or weakening the size. For this, wesetd =
0.3, 0.6, 0.9 with A = 1 in the equation for 4. Figure 2
shows a comparison of GDSF(1) and GDSF#(1) with § =
0.3,0.6, 0.9 with & = 1 for the three Web server fraces. The
resuits are on expected lines. The effect of decreased
impact of file size improves BHR across all the six traces.
Apgain, it is at the cost of HR. Specifically, we get best
BHR at&=0.3, and best HR at 5§ =0.9.

Effect of Augmenting Frequency & De-Augmenting Size
in GDSF#

We have seen that emphasizing frequency and de-
emphasizing size in GDSF# results in improved BHR, at
the cost of slight reduction in HR. Now the question is
then whether we can achieve still better results by
combination of both augmenting frequency and de-
augmenting size. For this, we try different combinations

of L and 8,

We find that we get best results for both HR and BHR for
the combination A = 2 and § = 0.9 for all the six Web
traces. This combination shows close to perfect

performance for both the important metrics: HR and BHR.

This is important result because as noted earlier, there is
always a trade-off between HR and BHR [2]. Replacement
policies that try to improve HR doso at the cost of BHR,
and vice versa [5]. Often, a high HR is preferable because
it allows a greater number of requests to be serviced out
of cache and thereby minimizing the average request
latency as perceived by the user. However, it is also
desirable to maximize BHR to minimize disk accesses or

outward network traffic,

In the next sections, we use the best combination of k=2

and 8= 0.9 in the equation for H; for GDSF# to compare

the performance of GDSF# with GDS(1), GDS(P), GDSF(I),. '

and GDSF(P).. So, instead of denoting it as GDSF#(A=2,
8=0.9), we will denote it as simply GDSF#.
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Figure 2: HR and BHR for GDSF# algorithm using Web server traces (6=0.3,0.6,0.9)

5.2 Simulation Results for Web Servers

In this section, we present and discuss simulation results
for Thermax, Wonderfulbuys, and Symbiosis Web

SErvers.
Simulation Resulfs for Thermax

Figures 3a and 3b give the comparison of GDSF# with
other algorithins.
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Figure 3a: Hit rate of Thermax trace
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Figure 3b: Byte Hit rate of Thermax trace

The results indicate that the HR achieved with an infinite
sized cache is 98.71% while the BHR is 94.19% for thé
Thermax trace. Of the algorithms shown in Figure 3,
GDSF(1) and GDSF#(1) had the highest and almost similar
HRs.

It case of BHRs, GDSF(P), GDSF#(1), and GDSF#(P) had '
the highest BHRs. However, GDSF(F) had a lower HR.
GDSF# is thus optimized for both HR and BHR incase of

Thermax trace.
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Simulation Results for Wonderfulbuys

Figures 4a and 4b show the performance graphically.

Simulation Results for Symbiosis

Figures 5a and 5b show the performance graphically.
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The results indicate that the HR achieved with an infinite
sized cache is 99.66% while the BHR is 99.27% for the
Wonderfulbuys trace. Of the algorithms shown in Figure
4, GDSF(1) had the highest HR followed by GDSF#(1}).
GDS({1)and GDS(P)also had a lower HRs.

In case of BHRs, GDSF#(P) had the highest BHR followed
by GDSF(P), GDSF#(1), and GDSF(1). However, GDSF#
scores over the others in better HR in case of

- Wonderfulbuys trace.
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Figure 5b: Byte Hit rate of Symbiosis trace

The results indicate that the HR achieved with an infinite
sized cache is 98.16% while the BHR is 95.87% for the
Symbiosis trace. Of the algorithms shown in Figure 5,
GDS(1) and GDSF(1} had the highest HR followed by
GDSF#(1). GDS(1) had a lower HR.

In case of BHRs, GDSF#(1), and GDSF#P) had the highest
BHRs followed by GDSE(1) and GDSF(P). However,




Trace Driven Simulation of GDSF# and Existing Caching Algorithms for Infemet Web Servers

because of comparatively better HR, GDSF# scores over

most of the other algorithms in case of Symbiosis trace.

6. CONCLUSION

In this paper, we proposed a Web cache algorithm called
GDSF#, which tries to maximize both HR and BHR. It
incorporates the most important parameters of the Web
traces: size, frequency of access, and age (using inflation

value, L) in a simple way.

We have compared GDSF# with some popular cache
replacement policies for Web serversusing a trace-driven
simulation approach. We conducted several experiments
using three Web server traces. The replacement policies
examined were GDS(1), GDS(P), GDSF(1), GDSF(P).
GDSF#(1), and GDSF#P). We used metrics like Hit Ratio
(HR) and Byte Hit Ratio (BHR) to measure and compare
performance of these algorithms. Our experimental results
show that:

+ Aspointed out by Williams et al. in {11}, the observed
HRs can range from 20% to as high as 98%, with
majority ranging around 50%. The workload with a hit
rate of 98% comes from a Web server cache, rather
than proxy cache. Our results are consistent with this

finding.

The results also indicate that it is more difficult to
achieve high BHRs than high HRs. For exanple, in all

the three traces, the maximum BHR is always less than

maxinam HR.
The results are consistent across ali the three fraces.
GDSF# and GDSF show the best HR and BHR

significantly outperforming the baseline algorithms
like LRU, LFU for these metrics.

Replacement policies emphasizing the document size

yield better HR, but typically show poor BHR. The
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explanation is that in size-based policies, large files
are always the potential candidates for the eviction,
and the inflation factor is advanced very slowly, so
that even if a large file is accessed on a regular basis,
it is likely to be evicted repeatedly. GDSF and GDSF#
uses frequency as 2 parameter inits decision-making,
so popular large files have better chance of staying m
a cache. In addition, the inflation or ageing factor, Lis
now advanced faster. GDSF and GDSF# shows
substantially improved BHR across all traces.

Similarly, replacement policies giving irnportanée to
frequency yield better BHR because they do not
discriminate against the large files. These policies also
retain popular objects (both small and large) longer
than recency-based policies like LRU. However,
_ normally these policies show poor HR because these
policies do not take into account the file size which

results in a higher file miss penalty.

We analyzed the performance of GDSF# policy, which
allows augmenting or weakeniﬁg the impact of size or
frequency or both on HR and BHR. Our results show
that our proposed replacement policy gives close to
perfect performance in both the important metrics: HR
and BHR.
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