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Parallel Genetic Algorithms —State Of The Art Survey
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ABSTRACT

Genetic .aIgorithms (GAs) are powerful search techniques
based on the mechanics of natural selection and natural
genetics that are used successfully to solve problemns in many
different disciplines. In this work we review the most
important existing developments in the class of Parallel
Genetic Algorithms (PGAs). An exceptional characteristic
of PGAs is that, they are not just the parallel version ofa
sequentiat genetic algorithm intended to provide speed gains
but also represents a new kind of meta-heuristics of higher
efficiency and -efficacy. The good robustness of these
algorithms on problems of high complexity has led to an
increasing number of applications in the fields of artificial
intelligence, numeric and ¢ombinatorial optimization,

business, engineering, etc.

Keywords: Parallel genetic algorithms (PGAs),
evolution topics, global single-population master slave
GAs, single-population fine-grained GAs and multiple-

population coarse grained GAs.

1. INTRODUCTION

Sequential GAs are-generally able to find good solutions

in reasonable amounts of time, but as they are applied to
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harder and bigger problems there is an increase in the
time required to find adequate solutions. As a
consequence, there have been multiple efforts to make

GAs faster, and one of the most promising choices is to

- use parallel implementations. Parallel Genetic Algorithms
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are parallel stochastic algorithms applied successfully
to find acceptable solutions to problems in Business;
engineering, and science [1]. To speed up the processing,
the population is split into several sub-populations and
is run in parallel. Numerous advances in this field are
continuously being achieved by designing new operaitor_s,
hybrid algorithms and termination criteria {4].

PGAs are not just parallel versions of sequential genetic
algorithms. In fact they actually reach the ideal goal of
having a parallel algorithm whose behavior is better than
the sum of the separate behaviors of its component sub-
algorithms. First of all, PGAs are naturally prone to
parallelism since the operations on the strings are
relatively independent from each other. Besides that, the
whole population (panmixia) can be geographically
structured [7], [8], [9] to localize competitive selection
between string subsets, often leading to better algorithms.
The evidences of a higher efﬁciency {11}, [10], larger
diversity maintenance [12], [13], additional availability
of memory and CPU, and multi-solution capabilities [14],
reinforce the importance of the research advances in the
field of PGAs.

Hardware paralleiiiation is an additional way of speeding
up the execution of the algorithm, and it can be attained
in many ways on a given structured-population GA.

Hence, once a structured-population model is defined, it
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could be implemented in any uni-processor or paraliel
machine. There exist many examples of this modemn
vis_ion of parallel GAs, namely, a ring of panmictic GAs
on a MIMD computer, a grid of individuals on umi-

processor/MIMD/SIMD computers, and many hybrids.

This paper is oiganized as follows: Section 2 contains
infroductory material providing the nomenclature, and
some general working principles of sequential GAs.
Section 3 offers an introduétion to parallel GA and
formalizes the work of a parallel GA. Section 4 describes
the categorization of paraliel GAs. Section 5 deals with
the migration issues related to parallel GAs. The
comumunication topologies are discussed in Section 6.
Some of the important applications of parallel GA are
dealt in Section 7. Section 8 discusses the implementation
issues. Finally, Section 9 provides some concluding

remarks and summary of the survey work.

2. SEQUENTIAL GENETIC ALGORITEMS

A Sequential Genetic Algorithm (SGA) 2}, 3] is a
heuristic used to find a vector, which is a string of free
parameters with values in an admissible region for which
-an arbitrary quality criterion is optimized. Genetic
algorithm in the beginning has randomly generated
individuals, which form the population. The population

in certain time is called a generation. Every individual is

represented by its 'ct}romosome. The chromesomes are
evaluated by its fitness function. The average fitness of
the population changes gradually during the run. Afier a
pair of individuals is chosen randomly, crossover
executes an exchange of the sub-string within the pair
with some probability. Mutation is an operator for a slight
change of one-individual/séverai individuals in the
population, Miitation is usually considered asa secondary
search operator and its function is to restore diversity
that may be lost from the repeated application of selection

and crossover. Selection identifies the fittest inglividuals.

The higher the fitness, the bigger the probability to
become a parent in the next generation, Table 1
summarizes the meaning of these special terms in the
aim of helping novel researchers.

Table I Nomenclature

The code, devised for parameter
representation of the problem in
string form.

Chromesome | One  encoded string of
parameters  (binary, Gray,
Floating point type, efc....).

One or more chromosomes with
an associated fitness value,

The encoded version of a
parameter of the problem to be
solved.

Value that a gene can assume
(binary, integer, real or complex
data structures).

The position occupied by the
gene in the chromosome.
Problem  version ‘of the
genotype (algorithm version)
suited for evaluation.

Real wvalue indicating the
quality of an individual as a
solution to the problem

A function representation,
indicating the suitability of
phenotypes.

A set of individuals with their
associated statistics  (fitness
average, bhamming distance,
efc).

Palicy for selecting one
individual from the population
(selection of the fittest).
Operation  that merges the
genotypes of two selected
parents to vyield two new
children .
Operation that spontaneously
changes one or more alleles of
the genotype

Genotype

Individual

Gene

Allele

Locus

Phenetype

Fitness

Environment

Population

Selection

Crossover

Mutation




3. PARALLEL GENETIC Avcorrrums (PGAS)

The basic idea behind most parallel programs is to divi_de
- a task jnto chunks and to solve the chunks simultaneously
using multiple processors. Some parallelization methods
use a single population, while others divide the
7 population into several relatively isolated subpopulations.
' Some methods can exploit massively paraliel computer
architectures, while icusthr:rs are better suited to
-multicomputers with fewer and more powerful
processing clements. A large population distributed
among 4 number of semi-isolated breeding groups is
known as polytypic. A PGA introduces the concept of
interconnected demes. A deme is one separate
population(sub-population)in many deme populations.
‘The local selection and reproduction rules allow the
species to evolve locally, and diversity is enhanced by
migrations of strings among demes. Migration means an

exchange rate of individuals between the demes.
3.1, Introduction to Parallel Genetic Algorithms

PGAs ate a class of guided random evolutiona'ry
algorithms. A PGA has the same advantages as a serial
GA, .ponsisting in using representations of the problem
parameters, robusiness, easy custorization for a new
probl_eni, and multiple-solution capabilities. Genetic
algorithms are easily parallelized algorithms. PGA is
usually fasfer, less prone to finding only sub-optimal
solutioﬁs, and able of coépéfating with other search
téchniques in parallel. PGAs can Ec divided into global,
fme—grained, coarse-grained and hybrid models. APGA
can run on a netwdrk of compuiers or in massively

parallel computers, with independence of its granularity.

~There are two kinds of possible parallelism namely the
"data pa.r;z.i‘llelism an‘,d_the control parallelism. Data
parallelisrﬁ iuvblvgs the execution of the same procedure

“on multiple large data subsets at the same time. Only
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data manipulation is parallelized and the algorithm
executes one procedure in a certain period. In Eontrast,
control parallelism involves the concurrent execution of
multiple different procedures. An overview of the
applications of pafallel genetic algorithms (PGAs) [3],
[4], [7], [10] is available. The advantages of using a
PGA are illustrated in Table II. Also, there is a lot of
evidence of the higher efficacy and efficiency of PGAs
over traditional sequential GAs ([1], {71, [51, [8]).

Table Ti Advantages Of Using PGA

. Parallel search from multiple points in a space

. Works on a coding of the problem (least restrictive)
. Basically independent of the problem (robusfness)
. Can yield alternative solutions to the problem

. Easy parallelization as islands or neighborhoods

. Better search, even if no parallel hardware is used

. Higher efficiency and efficacy than sequenﬁal GAs.

oo ~1 v th B W R

. Fasy cooperation with other search procedures.

4, CrassIFICATION OF PARALLEL GAs
There are three main types of parallel GAs : (1) global
single-population master slave GAs, (2) single-
population fine-grained, and (3) multiple-population
coarse grained GAs.
4.1 Master slave parallelization

In a master-slave GA there is a single panmictic
popuiation (just as in a sﬁﬁ;ﬁic GA), but the evaluation
of fitness is distributed among several pro_cessofs. Since -
in this :type of parallel GA, selection and crossover is
considered in the entire population it is also known as
global parallel GAs. This method does not affect the
behavior of the algorithm. As in a serial GA, each
individual muy compete and mate with any other (thus

selection and mating are global).
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Figure 1 A schematic of a master-slave paraliel
GA. - '

As shown in Figure 1, the master stores the population,

executes GA operations, and distributes individuals to

" the slaves. The slaves only evaluate the fitness of the -

indiyiduals. The evaluation of individuals is parallelized
[3 0] by assigning a fraction of the population to each of
the processors available. If the algorithm stops and waits
to Teceive the fitness values for all the population before
proceeding into the next generation, then the algorithm
is synchronous. However it is also possible to implement
asynchronous master-slave GA where the algorithm does
not sfop to wait for any slow processors. Most global
parallel GA implementations are synchronous. The
global parallelization model does not assume anything
about the underlying computer, architecture, and it can
be iinplemen'ted efficiently on shared-memory and
 distributed memory computers. Implementation of GA
was done on a shared-memory cumputer' to search for
efficient timetables for schools and they reported limited
speedups [33]. In conclusion, masteroslave parallel GAs
are easy to implement and it can be a very efficient
method of parallelization when. the evaluation needs
considerable computations, Besides, the method has the

advantage of not altering the search behavior of the GA.

4.2 Multi-deme coar;se-grain parallel GA

Multiple-population (or multiple-deme) GAs shown in
Figure 2 is more sophisticated, as it contains several
sub]ﬁopulations, which exchange individuals
occasionally. The important characteristic of multiple-
deme parallel GAs are the use of a few relatively large
subpopulations and migration [18]. This exchange of

individuals is called migration and is controlled by
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several parameters. Multiple-deme GAs are very popular -
but also are the class of parallel GAs which is most
difficult to understand, because the effects of migration

are not fully understood.

Figure 2 A schematic of 2 multiple-population
parallel GA,

Multiple-deme parallel GAs introduces fundamental
changes in the operation of the GA and has a different
behavior than simple GAs. Each process is a sim;ile GA,
and there is (infrequent) communication betweeﬁ the
populations. Multiple-deme parallel GAs is known with
different names. Sometimes they are known a.s'.
“distributed” GAs, because they are usually implemented
on distributed memory MIMD computers[31]. Since the
computation to communication ratio is wsually high, they
are occasionally called coarse-grained GAs. Finally,
multiple-deme GAs[34] resemble the “island model” in
Population Genetics which considers relatively'isolated
demes, so the parallel GAs are also known as “island”
parallel GAs. Probably the first systematic study of
parallel GAs with multiple populations was Grosso’s
dissertation and concluded that the favorable traits spread
faster when the demes are small than when the demes
are large. In a similar paralie]l GA approach, a éopy of
the best individual found in each deme is sent to all its
neighbors afier every generation to ensure goo& rm'xihg

of individuals.
4.3 Single population fine-grained parallel GA

Finc-grained parallel GAs are suitable for massively
parallel computers and consists of one spatially-
structured population. Selection and mating are restricted

to 2 small neighborhood, but neighborhoods overlap
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permitting some interaction among all the individuals.
Figure 3 depicts the structure of this class of GAs. The
ideal case is to have only one individual*for every

processing element available.

Figure 3. A schematic of 2 fine-grained parallel GA.

This class of parallel GAs has one spatially-distributed
population, and it can be implemented very efficiently
on miassively parallel computers. Parallelization of the
genetic algorithm of a classifier sysfem was done on a
* Connection machine 1 where the parallelization was done
on the selection of parents, selection of classifiers, mating
and crossover [35]. A populﬁtion with ladder structure
{36] was used to solve some difficult combinatorial
optimization prdblems w'i'th.great S1CCESS.

‘4.4 Hybrid parallel GA

'Thé last fnethod to parallelize GAs combines multiple
demes with master-slave or fine-grained GAs as shown
m Figure 4.This class of algorithms is called as hybrid
parallel GAs, because at  higher levél they are multiple-
deme algorit}ims ar:id with single-population parallel GAs
{either master—sla{r:e' or fine-grained) at the lower level.
A hybrid paraH:?I GA combines the benefits of its
qomboncnts, and it promises better, perforﬁlance than any
of thém alone. Fi_)r example in “mixed” parallel GA
algorithm, the pdﬁulation of each deme was placed ona
2-D grid,'angi. the demes themselves were connected as a
.2-D' torus. I\;Iigraﬁon between deines occurred at regular
intervals, and good results were reported for a novel

neural network design and training application.

Figure 4. Hybrid GA showing 2 combination of a
multi-deme GA (at the upper level) and a fine-
grained GA (at the lower level).

Another type of hybrid paratlel GA as shown i Figure 5
uses a master-siave on each of the demes of a multi-
population GA. Migration occurs between demes, and
the evaluation of the individuals is handled in parallel.

This approach does not introduce new analytic problems,

- and it can be useful when working with complex

applications with objective functions that need a
considerable amount of computation time. Hybridizing
paralle]l GAs shows that, a solution of the same quality
of a master-slave parallel GA or a multi-deme GA can be
obtained in less time[19]. Interestingly, Gol.dberg
invented a very similar concept in the context of an
object-oriented implementation of a “community model”
parallel GA. In each “community” there are multiple
houses where parents reproduce and the offspring are

evaluated.

Figure 5. A schematic of a hybrid parallel GA.
At the upper level this hybrid is a multi-deme parallel

. GA where each node is a master-slave GA. There are
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multiple communities and it‘_is p.ossible that individuals
migrate to other places. A third method of hybridizing
parallel GAs is to use multi-deme GAs at both the upper
and the lower levels (see Figure 6). The idea is to force
panmictic mixing at the lower level by using a high

migration rate and a dense topology, while a fow
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migration rate is used at the high level. The complexity
of this hybrid would be equivalent to a multiple-
population GA if the groups of panmictic subpopulations
~were considered as a single deme. At the lower level the
migration rate is faster and the communications topology
is much denser than at the upper level. Hybrid
implementations can reduce the execution time more than

any of their components alone.

Figure 6 Hybrid structure using multi-deme GAs at
both the upper and the lower levels.

5. Migration
Migration is the operator that gnides the exchange of
individuals among demes in a multi-deme environment.
The migration of individuals from one deme to another
is contralled by several parameters like (a) the topology
that defines the connections between the subpopulations,
(b) a migration rate that controls how many individuals
can migrate and {c) a migration interval that affects the
frequency of rhigrations.
5.1 Migration gap: In the majority of multi-deme parallel
GAs, migration is synchronous which means that it
occurs at predeten‘nined:constant intervals. Migration
‘ may also be asynchrono‘ﬁs s0 ihat the demes communicate
only after some events éccur. An algorithm is presented
where migration occurred after the demes converged
completely with the purpose of restoring diversity into
the demes to prevent premature convergence to a low-
quality solution [37]. The same migration strategy was
“used later and theoretical models were presented
1201,[3 8.] which predict the quality of the solutions when

a fully connected tepology is used.
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5.2 Migration rate: The migration rate is the parameter
determining the number of individuals that undergo
in.igration-in gvery exchange. This value can be expressed
as a percentage of the population or as an absolute- vaiue, If
migration occurs too early during the run, the number of
correct building blocks in the migrants may be too small to
influence the search on the right direction, and expensive
communication resources would be wasted. It is very
common in parallel GAs that the same selection/replacement
operators are used for dealing with migrants, Two alternative
selection procedures for the migrants are (1) sending the

best individual or (2} sending a random one,

6. CommunicaTion ToPOLOGIES

A traditionally neglected component of parallel GAs is

the topology of the interconnection between demes. The

topology is an important factor in the performance of
the parallel GA because it determines how fast a good

solution disserninates to other demes. If the topology has

a dense connectivity good solutions will spread fast to

all the demes and may quickly take over the population.

On the other hand, if the topology is sparsely connected;

solutions will spread slower and the demes will be more

isolated from each other, permitting the appearanée of
different solutions. These solutions may come together

at a later tirne and recombine to form potentially better

individuals. The communication topology is also

important because it is a major factor in the cost of
migration. For instance, a densely connected {opology

may promote a better mixing of individuals, but it also

entails higher communication costs. The general trend

on multi-deme parallel GAs is to use static topologies

that are specified at the beginning of the run and remain
unchanged. Most implementations of parallel GAs with
static topologies use the native topology of the computer

available to the researchers. For éxample,




implementations on hypercubes {6,12] and rings are
common. A more recent empirical study showed that
parallel GAs with dense topologies find the global
solution using fewer function evaluaﬁons than GAs with
spar_scly‘connecte,,d ones [11].

The other major choice is touse a dynamic topology. In
this method, a deme is not restricted to communicate with
some fixed set of demes, but instead the migrants are
sent to demes that meet some criteria. The motivatibn
behind dynamic topologies is to identify the demes where
migrants are likely to produce some effect. Typically, the
criteria used to choose a deme as a destination includes
measures of the diversity of the population [18] or a
measure of the genotypic distance _betWeen the two
populations [20] or some reprcsentdtive individual of a

population, like the best.

4. AppricaTion OF ParaLLzL GA
Many a_ppiication projects using multiple-population
ﬁaralle_l GAs has been published. The graph-partitioning
problem has been a popular applicatidn of multiple-deme
‘GAs [23]. The work on the set-partitioning [25] problem
with 36,699 and 43,749 integer- variables showed that
the quality of the solution‘iﬁlproved as more demes
were added. Also, adequate solutions for the quadratic
assignment problem [24] have been found which is
: mo&er combinatorial optimization application. Coars;e—
grained paraliel GAs have also been used to find solutions
fér ‘the problerﬁ of distributing computing loads to the
_procegsing nodes of MIMD computers {31]. Another
challenging application is the synthesis of VLSI circuits
[29] using different types of parallel GAs to search for

solutions.

8. IMPLEMENTATION Issues
Among all the languages for developing PGAs, Cis the

most popular. However, implementations with C++ are
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now growing in number due to the advantages in software
reuse, security, and extensibility. Also, because of its large
capability of structured parameterization, an object
oriented (OOQ) language has advantages in composh;g
new prototypes. On the other hand, there exist many
PGAs developed for concrete méchine architectures that
use embedded languages (usually versions of C). -
Using object orientation is directly useful in developing
classes for the data structures and operations contained
in a parallel or sequenﬁal GA. Hence, implementing
classes for gcnotyi)e, population, operator pool, fitness
manipulations, etc. is a natural way of codiﬁg
evolutionary algorithms in general with the added
advantages of any OO implementation. Cominunication
among processes is normally achieved by using the BSD
socket interface on UNIX systems, either directly or
through the services of the well-known Parallel Virtual
Machine (PVM) [21]. Some MPI and JTAVA
impleientations are also becoming familiar. Finally,
many systems simulate paralielism in a single process.
The latter is useful only when thé basic behavior is to be
studied. However, for real-life and complex applications,
a truly parallel GA is needed in order to have lower
éomputational times and using larger populations than

with sequential GAs.

9. SUMMARY AND CONCLUSIONS

This paper reviewed some of the most reviewed
publications on parallel genetic algorithms. The review
started with the introduction to genetic algorithms,
parallel genetic algorithms and by classifying the work
on this field into four categories: global master-slave
parallelization, fine-grained algorithms, multiple-deme,
and hybrid 'parallei GAs. Some of the most ifnp'ortan_t
contributions in each of these categories were analyzed,_'

to try to identify the issues that affect the desigﬁ and the_,
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implementation of each class of parallel GAs on existing
parallel computers.

The survey on multiple—population GAs revealed that the
class of parallel GAs is very complex, and its behavior
is affected by many parameters. It seems that the only
way to achieve a greater understanding of parallel GAs
is to study individual facets independently, and we have
seen that some of the most influential publications in
paralle]l GAs concentrate on only one aspect {imigration
rétes, communication topology, or deme size) either
ignoring or making simplifying assumptions on the
others. We also reviewed publications on master-slave
and ﬁne-grained' Iiaralfel GAs and realized that the
combination of different parallelization strategies can
result in faster algorithms. It is particularly important to
consider the hybridization of parallel techniques in the
light of recent results, which predict the existence of an
optimal number of demes.

As GAs are applied to larger and more difficult search
problems, it becomes necessary to design faster
algorithms that retain the capability of finding acceptable
solutions. This survey has presented numerous examples
that‘ show that paraliel GAs .are capable of combining
speed and efﬁcacy, and that we are reaching a2 beiter
undezrstanding which should allow us to utilize them

better in the future.
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