JCS Vol.1 No.2 Sep - Oct 2005

An Efficient Framework for Managing Consistency in CDN

P.Venketesh' S.N.Sivanandam®? S.Manigandan® A.Chitra®

Abstract

Content Distribution Networks (CDN) plays a major role
in reducing client latency and minimizing network
workload. To disseminate data effectively to end users
spread geographically, Consistency has to be maintained
between origin server, swrogate servers and intermediate
proxies. In this paper, we propose a novel approach that
provides scalable and flexible solution for maintaining
consistency. The model uses concept of Cooperative
Consistency along with mechanism called Object Lifetime
to achieve strong/weak consistency depending on the
nature of object accessed. The proposed model will reduce
message and state space overhead at both server and
proxy significantly. To send server notifications to
proxies, we use application-level multicast that enhances
performance and applies in a scalable manner to content

distribution network.

Key words :Content Distribution Network, Data
Dissemination, Object Lifetime, Consistency, Caching,

Propagation, Invalidation.

1.INTRODUCTION
The World Wide Web and Internet has witnessed
enormous growth for more than a decade and it demands

efficient mechanism to disseminate data to end users.

13Research Scholars, Department of CSE, PSG College of
Technology, Coimbatore, India.

24Professors,Department of CSE, PSG College of
Technology, Coimbatore, India.
Email:venkip ms@yahoo.co.in', manigandan_me@yahoo.co.in’

109

Content Distribution Network (CDN) is considered a viable
option; it minimizes client latency, reduces server and
network load significantly. CDN comprises Origin server,

surrogate servers and intermediate proxies.

Counsistency maintenance among these components is
very essential for delivering current data to end-users.
Different objects require different level of consistency
guarantees based on their characteristics and user
preferences. Consistency mechanism indicates four
different levels that can be considered for irﬁpiementation:
Strong Consistency, Delta Consistency, Weak

Consistency and Mutual Consistency.

Consistency model to be employed by CDN should satisfy
two important factors: Scalability and Flexibility.
Methods proposed for stand-alone proxies do not scale
well for large number of proxies available in CDN. The
original leases approach has several drawbacks when
applied to busy servers. The problem of finding exact
lease duration is a major concern and it causes significant
computation overhead for server. In this paper, we propo‘se
a mode] that uses concept of Cooperative Cousistency
along with mechanism called Object Lifetime. Several
Proxies cooperate with each other to achieve desired level

of consistency. -

In this model, server notifications will be sent to
cooperating proxies untit object is removed from
corresponding proxy. It ignores computation of leases
and minimizes server workload. By employing A
consistency, the model provides flexible way of specifying
to be

consistency guarantee provided for

JC§ Vol.1 No.2 Sep - Oct 2005

particular object. To disseminate server notifications, we
use application-level multicast, which enhances server
performance. Request / Response messages use existing
HTTP/1.1 Protocol specifications with slight modification
to meet our requirements. The proposed model will reduce
number of messages exchanged between server and
proxy; minimizes server state space to a considerable

extent.

The rest of this paper is organized as follows. Section 2
provides related work carried out in maintaining
consistency. Section 3 explains the proposed system
model that provides scalable mechanism for consistency
management. Section 4 discusses advantages and design

issues of proposed approach. Section 5 concludes the

paper.

2.RELATED WORK

Consistency for CDN caches is implemented by selecting
appropriate consistency models that uses various
consistency policies and content distribution
mechanisms G Pierre et al [1]. Consistency model is
basically a contract between content delivery system and
its clients that dictates the consistency-related properties
of the content. Consistency policy defines how, when,
and to which object replicas the content distribution
mechanisms are applied. Replica servers exchange replica
updates using content distributidn mechanisms.
A fyengar et al [2] broadly categoﬁzes Consistency
provisioning as: Server Driven, Chient Driven and Explicit

mechanisms.

H.Yu et al [3] proposes architecture that uses caching
hierarchy and application level multicast routing to
convey invalidations. It forms multicast group among
caches and sends heartheat message to each other.

M.Dahlin et af [4] proposes Web Cache Invalidation

Protocol (WCIP) for propagating server invalidations
using application-level multicast while providing delta
consistency. Z. Fei [5] suggests a novel hybrid approach

for maintaining strong consistency between origin server

and surrogate servers. The origin server makes the

110

decision of using either propagation or invalidation
method for each document based on the statistics about
the update frequency at the origin server and the request

rates collected by replicas

Cache consistency is achieved through a protocol called
WCDP [6] (Web Content Distribution protocot). It is an
Invalidation and Update protocol with different
consistency levels like Strong Consistency, Delta
Consistency, Weak consistency and explicit consistency.
V.Duvvuri et al [7] suggests Leases as a mechanism to
provide consistency in CDN. It broadly categorizes leases
into three groups: age-based, renewal-frequency-based
and load based ones. J Yin et al [8] proposed mechanism
called Volume Leases, where each lease represents
multiple objects cached by stand-alone proxy. A Ninan
et al [9, 10] proposed a sealable and flexible technique
called Cooperative consistency along with mechanism
of Cooperative leases. It uses “AConsistency semantics
and single lease for multiple proxies. S.Sivasubramanian
et al {11] proposed a system that guarantees strong
consistency for web applications with high scalability. It
uses unique mechanism of Partial Replication, where data

units are replicated only to servers that access them often.

In order to provide Strong Consistency for web caches a
protocol called BTC {Basis Token Consistency) was
proposed by Adam D.Bradley & Azer Bestavros [12].
J.Yin et al [13] proposed an approach that uses
hierarchical structure for server-driven cache consistency.
Haifeng Yu & Amin Vahdat [14] proposes continuous
consistency model, which explores semantic space

between strong and optimistic consistency guarantees,

An Efficient Framework for Managing Consistency in CDN

In order to capture consistency spectrum it defines three
metrics; Numerical Error, Order Errvor and Staleness.
The distributed object consistency protocol (DOCP} [15]
proposes extensions to the current HTTP cache control
mechanism for providing consistency guarantees. DOCP
uses publish and subscribe mechanism along with server
invalidations to provide consistency guarantees. Slave
proxies use an optimistic discovery mechanism to

subscribe for content published by Master proxies.

3.CONSISTENCY MODEL

Henhes
proxies

Smrogate
Seaver .

Sunagate
Server

Sunogate
Sarves
SIRIogate .
Sesvel ~
~~{ Clients

——+ Nenficaton ifvalidare: Updarey =~ «* Inforaing Ohjert temeval
- Hotificanion Tenninaon

Hemhel
proxies

’vl
1
+
- S

-~

[y

. U s
| E

-
Memher o

prexles

Lnigin
Berve:

?

Hembe
proxles

— ——F Sendingrequested objxct

Requesnng Object

Fig1: Consistency Model System Architecture

Content Distribution network comprises Origin server,
Surrogate Servers, intenmediate proxies and clients as
depicted in figl. Web proxies present in CDN will be
logically organized in to non-overlapping regions for each
object to minimize overhead in maintaining consistency.
Each region will select Leader proxy that is responsible
for commuﬁicating with surrogate servers. Between
Origin server and Surrogate servers, the system should
maintain strong consistency because surrogate server
contains exact replica of data present in origin server.
Consistency level applied between Surrogate servers and
intermediate proxies will depend on object characteristics

and user preferences. To achieve scalable way of

111

specifying the consistency guarantee to be provided for
particular object, we use concept called as A- consistency.
The value of Adetermines the nature of consistency
provided for an object; larger the value of Aweaker the
consistency guarantee provided (A=0, indicates strong

consistency).

In this model, we introduce concept called as Object
Lifetime- amount of time object resides in cache before
being purged. Modifications done to object present at
server needs to be notified to proxies for maintaining
current version of object. Server notification to proxies
can be either Invalidation message or update of new
object; choice depends on various factors like:
Modification rate at server, request frequency of object
in proxy, size of abject. Notification from server will be
continued till corresponding object is removed from proxy.
Proxies in CDN cooperate together to achieve
consistency- called as Cooperative Consistency (one
Leader proxy, many member proxies per region). Server
notifications will be sent only to leader proxy, it minimizes
amount of state to be maintained at server and number of
messages to be sent. Leader proxy is responsible for

propagating notifications to its member proxies.

Leader Selection and logical grouping of proxies need to
be performed for every object. Method used for leader
selection should be such that it achieves load balancing;
i.e. all proxies get equal opportunity to be a leader for
different object. Each Leader needs to maintain
Membership list that holds list of proxies interested in
particular object. Similarly, member proxies will maintaina
list that indicates Leader for particular object and also
information about other proxies that holds the object. To
maintain mapping between Leader proxy and member
proxies mechanisms like consistent hashing {16], hint

caches [17] and bloom filters [18] are considered.

JCS§ Vol.1 No.2 Sep - Oct 2005

3.1 First Time Requests

When client requests an object for the first time it is sent

to a proxy within a region as shown in Fig 2. Before proxy
" sends the request to server, it initiates leader selection

algorithm for selecting Leader of corresponding region;

different object will have different leader. Since proxy

may not hold the obiject initially, it directs the request to

either origin server or surogate server, It sends leader

information and notification rate-A(optional) along with

the request to server. HTTP /1.1 Protocol used to generate

requests and responses. Server responds by providing

the requested object along with Object_ID to requested

proxy and also to Leader if it is different from the proxy

that requested it. The usage of Object_ID in subsequent

transaction will reduce the amount of data to be sent

between server and proxy. Leader will broadcast message

to all proxies in the region informing about its availability.

Server will propagate notification only to leader proxy

and it is responsible for managing objects in member

proxies.

Request: (Proxy to Server)

fURL,L,A}

A-Notification rate (optional)

L —Leader of Region

URL- link for the object

Response: (Server to Proxy)

{0,0_ID,L, A} [Assuming only one region

considered]
{0,0 ID,G L, A} [Assuming more
than one region for CDN]
O=0bject, O0_ID= Object ID,
G=Proxyregion, L= Leader,

A= Notification rate

112

* Response

\

4

Leader
) Y
¥ X X
Updatng
Last

Client

Fig. 2: First Time Requests

3.2 Subsequent Requests

When client makes request for the same object, proxy
first checks in its local cache. If it is Local hit, requested
object will be send to client from proxy as indicated in Fig
3. If it is a miss, proxy will send the request to either
server or to other proxies within region. Leader has to
update its membership list every time proxy gets object
from server, so that the corresponding proxy will receive
notification. The member proxy may use Object ID sent
to it from server or it can use its own Local_Object D\ If
it uses different identifier, then mapping has to be
provided between Object ID from server and

Local Object ID of member proxy.

Server

7
4
£
4

Request

(mmis) Update

List
S —

Proxy

Leader

i
! Local hit
v
Client

Request

Fig. 3: Subsequent Requests

An

Efficient Framework for Managing Consistency in CDN

3.3 Object Updates
Whenever there is modification to object at server, it will
send notifications to proxies to maintain consistent view
of data. The notifications sent from server can be either
invalidation message or update message containing new
version of object. Depending on the notification rate A,
server propagates the notification messages only to leader
proxies in order to minimize amou nt of messages to be
transmitted. Leader proxy is responsible for sending
notifications to its member proxies to maintain
consistency, based on the membership list it maintains.
Only leader proxy will interact with the server and it is
responsible for terminating notifications. Between Server
and Leader proxy, we use Unicast mechanism to send
messages. Leader will use Application-level multicast
mechanism to propagate notifications to its member
proxies.
If Invalidation message need to be sent from server to
Jeader proxy and from leader proxy to member proxies,
message format used is

{Object_ID, invalidate}

If Update message is to be sent, then message format
“used is
{Object, update}
(Or)
{Object, Object_ID, update}

Object here corresponds to new version of the object
sent for maintaining consistency.

3.4 Notification Termination

Leader Proxy is responsible for terminating the
notification from server. Whenever object is removed from
member proxy, it will intimate to Leader and it will not
send notifications to corresponding member proxy. When
membership list maintained at Leader becomes empty, it
will send termination message to server and intimatioﬁ
message to member proxies saying it will be no longer

feader for corresponding region.

113

Whenever a particular object gets hit in proxy, it will be
placed at the head of Queue that is maintained for easy
maintenance of objects. When an object does not get
any hit, it will move down the queue, time taken to transfer
down the queue depend on the input rate of requests
coming to corresponding proxy. Object lifetime depends
on the number of hits a particular object receives while it
is in the corresponding proxy. The popularity of an object
depends on how long it resides in cache and number of
hits it receives. An object will be purged from cache, if it
does not get any hit or number of hits it receives is minimal.
The replacement policy used for object removal depends
on various factors like: Object Hit Rate, Byte Hit Raté and
QoS desired. '

Independent of Replacement policy used, the object that
gets low hit will be moved towards the tail of quéue, and
its probability as a victim for removal from cache is high.
To notify that object has been removed from proxy, we
use Object_ID instead of using Object; it reduces anount
of data to be sent. The message format used by member

proxy to inform purging of object to Leader will bet
{Object_ID, Purged}

where Purged is a Boolean value (True/ False}

Whenever leader proxy gets this message, it removes

particular proxy information from its membership list;

notifications for that proxy wilt be terminated.

4. DESIGN ISSUES

The model requires cooperation from both proxy and server
for maintaining consistency. Server is responsible for
sending notifications to leader proxies. Member Proxy is
responsible for tracking when object gets purged from
cache and inform to leader proxy, so that it will not getany
notification for particular object. Advantages of this model

inchude:

JCS Vol.T No.2 Sep - Oct 2005

Minimal Server Overhead: State space maintained is

significantly reduced.

No Leases considered, so computation is reduced at

SETVer.

Need not consider any renewal methods for getting

notifications from server.

System is highly flexible and scalable, can be applied
to large CDN.

No Unnecessary notifications; whenever object is

removed from proxy, it will not get any message.

Proxy need not renew duration time from server for getting
notifications, as long as object resides in cache. Tt
minimizes client latency when it makes request for the

object.

Each proxy maintains mapping between object and its
corresponding leader; it also maintains information about
other proxies holding the same object. The information
will be maintained till leader is relieved from its activity,
even though object is removed from proxy. This
mechanism will help the member proxy to contact the same
leader, if client makes request to the same object after it is
removed. Proxy will select a new leader, only when current
leader sends message saying that it is relieved from the
job.

If Object is popular and resides in corresponding proxy
for a long duration, Server will keep on sending notification
to Leader; which in turn sends to member proxy without
knowing whether corresponding proxy is alive or not. To
check the status of Server, Leader Proxy and Member
Proxies, we use mechanism called as ‘HeartBeat’. At
periodic intervals, the system will be sending heartbeat
messages to keep it in working condition. Based on certain
factors, interval value can be fixed by either client or
content provider or by both. The information obtained

using this mechanism, helps to prevent unnecessary

114

transfer of messages, removing information from server/

proxy that is invalid.

If cache space maintained at proxy is not full, then object
may not be removed from it by the corresponding
replacement policy. This may lead to endless notification
from Server. To overcome this situation, time duration can
be set, such that if object does not get any hit within fixed
time, then it can be removed from cache or marked invalid.
The notification rate-+can be calculated based on server

or network workload.

4.1 Test Results

The proposed model is tested by considering an origin
Server, surrogate server, set of proxies and clients. The
model is compared with existing leases approach to
indicate the enhanced performance provided by our
system. In fig 4, we have shown the number of control
messages exchanged during different time periods. For
renewal times (10,15,20,25 min) the leases approach
requires more control messages compared to our

proposed model,

Number of Contral Mesnages

b0 254 Q0 A5 du 4B L Sn ED

1 Renewat (Leaseol every X min for a day

R DOt i e Fropeed mellog

Fig 4: Analysis of Test Results
The new approach achieves more or less equal
performance to leases approach when the renewal time is
more. The approach shows significant reduction in
message transfer when object resides in proxy for long

duration.

An Efficlent Framework for Managing Consistency in CDN

5. CONCLUSION

In this paper, we have proposed a new model that uses
Object Lifetime along with mechanism called Cooperative
Consistency. The model will meet requirements such as
scalability and flexibility in maintaining consistency. It
significantly reduces the overhead experienced in
previous methods. It can be applied effectively for both
static and dynamic data available in CDN. Leader selection
method should be such that it achieves efficient load
balancing. The model supports different levels of
consistency, uses existing HTTP /1.1 protocol for sending

invalidates and updates.

References

[1} S. Sivasubrarnanian, M.Szymaniak, GPierre, Marteen
Van Steen, “Web Replica Hosting System Design”,
Internal Report IR-CS-001, Dept. of Computer Science,
Vrije Universiteit, Amsterdam, The Netherlands,
Revised May 2004

[2] A.Iyengar, E.Nahum, A.Shaikh, R.Tewari “Enhancing
Web Performance” Proceedings of the IFIP 17 World
Computer Congress — TC6 Stream on Communication

Systems: the State of the Art, pages 95-126, Year: 2002

[3] H.Yu, L.Breslau, and S.Shenker. “4 Scalable Web
Cache Consistency Architecture” In Proceedings of

the ACM SIGCOMM '99, Boston, MA, Sep.1999

[4] D.Li, P.Cao and M.Dahlin “WCIP: Web Cache
Invalidation Protocel”, IETF Internet Draft,
November 2000

[5] Z.Fei. “4 Novel Approach to Managing Counsistency
in Content Distribution Networks” In Proceedings
of the 6" Workshop on Web Caching and Content
Distribution, Boston, MA, June 2001,

[6} R. Tewari, T. Niranajan, and S. Ramamurthy, "WCDP:
Web content distribution protocol” IETF Internet
Draft, March 2002.

115

[7] V. Duvvuri, P.Shenoy, and R Tewari, “Adaptive Leases:
A Strong Consistency Mechanism for the World Wide
Web”, In Proceedings of the IEEE Infocom "00,
Teldviv, Israel, March 2000,

[8] J.Yin, L. Alvisi, M. Dahlin, and C. Lin, “Volume Leases
for Consistency in Large-Scale Systems”, IEEE
Transactions on Knowledge and Data Engineering,
January 1999.

[O] A.Ninan. “Maintaining Cache Consistency in
Content Distribution Networks” Master’s Thesis,
Department of Computer Science, Univ. of

Massachusetts, June 2001

[10] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham,
and R. Tewari, “Cooperative Leases. Scalable
consistency maintenance in content distribution
networks,” in WWw2002, (Honolulu, Hawaii), May
2002.

[11] 8.Sivasubramanian, G. Pierre, Maarten van Steex,
“Scalable Web
Applications”, In Proceedings of 11" ACM SIGOPS

Strong Consistency for

European Workshop, Leuven, Belgium, September
2004,

{12] Adam D, Bradley and Azer Bestavros, “Basis Token
Consistency: Supporting Strong Web Cache
Counsistency”, Global Internet 2002 (GI 2002},
Taipei, Taiwan, 2002.

[13]

“Hierarchical Cache Consistency in WAN”, In

J.Yin, L.Alvisi, Mike Dahlin, Calvin Lin,

Proceedings of the Usenix Symposium on Internet

Technologies (USITS *99), Boulder, CO, October 1999.

[14] Haifeng Yu and Amin Vahdat, “Design and valuation
of a Continuous Consistency Model for Replicated
Services”, In Proceedings of the Fourth Symposium
on Operating Systems Design and Implementation,

San Diego, California, October 2000.

JC§ Vol.1 No.2 Sep - Oct 2005

Fractal compression assumes that every image is
composed of smaller images just like them. The
compression technique tries to find as many of these
refationships in an image and then describe them with
mathematical formulas. This is done within regions of an
image called domain regions. These domain regions are
determined by using techniques such as frequency

analysis, edge detection, and texture-variation analysis.

In conventional fractal image coding technique, the image
is partitioned into 2 number of non-overlapping range
blocks. The larger domain blocks are selected from the
same image and can overlap. A grayscale image can be
coded by mapping the domain block D to the 1ange block
R with the contractive affine transformation [7] given in

the equation 1.
R=i{a(SoA)+D
gl (0

Where,

R - Coded range block

o - the scaling factor

S - the contractive transformation

D - Domain block

Ag - luminance shift

i -isometry
Then the fractal code describing the above confractive
affine transform that has minimum matching error
between the original range block and coded range block
R are transmitted and stored .The fractal code consists of
contrast scaling o, the luminance shift Ag, isometry i,
position PD of the best matching domain block in the
domain pool. In the decoding stage, an initial arbitrary
image is selected and the decoded image is repeatedly
reconstructed by applying the same contractive affine

transformation to the iterated image.

118

Here the aim of the paper is o reduce the time complexity
in the encoding process. This has been achieved using
edge detection before the encoding phase. In addition
mean image is transmitted along the fractal codes. So the
transformations can be done at the decoding stage without

any iterations leading to reduction in compression time.

2. EDGE DETECTION

An edge is a set of connected pixels that lie on the
boundary between two regions [6]. The magnitude of the
first derivative of the pixel intensity values can be used
to detect the presence of an edge. To be classified as a
meaningful edge point, the transition in pixel intensity
values associated with that point has to be significantly
stronger than the background at that point. Since it is local
computation, the method of choice to determine whether
a value is “significant” or not is to use a threshold. Thus
we define the point in the image as an edge point if its
two dimensional first order derivative is greater than the
specified threshold. A set of such points that are connected
according to a predefined criterion of connectedness is
by definition an edge.
2.1. Gradient Operators

First order derivatives of a digital image are based on
various approximations of the two dimensional gradient
(6]. Gradient of an image f{x,y) at location (%, y) is defined

as the vector given by equation (2).

=f

o =

X =

G af
ay

(2)

Fractal Image Compression with Edge Detection

The gradient operator points in the direction of maximum
rate of change of edge at coordinates (x,y). An important

quantity in edge detection is the magnitude of this vector
denoted by equation (3).

f =mag(f)=[G + Gzy] 172 (3)

This quantity gives the maximum rate of increase of f{(x,y)
per unit distance in the direction of f. This is referred to
as the gradient.

The direction of the gradient vector a{x,y) at (x,y) is given
by equation (4).
o(x,y)= tarr’! (G/G) {(4)

The direction of an edge at (x,y) is perpendicular to the

direction of the gradient vector at that point.

The computation of the gradient of an image is based on

obtaining the partial derivatives at every pixel locations.

2.2, Laplacian Operator
The Laplacian of a 2 — D function f(x,y) is a second -
order derivative defined as in equation (5).
VI f=92 £/9x2+33f/3y? (5)

Digital approximations to the laplacian for a3 x 3 region
is given by equation (6).

Vif=82Z,- (Z,+Z,+ LA Z A Z AL+ L T2 L)

{6)

3, COMPRESSION AND DECOMPRESSION
3.1. Compression

To encode the image, it is partitioned into blocks. An
image partitioning scheme is selected to generate range
blocks Ri. The original 256*256 image is reduced by
averaging into §4 * 64 image. This new jmage Js calles
t‘ﬁe Domain image. Both images are partitioned igto 4%4

blocks. 4 * 4 blocks that arg chosen as range blocks will '

resuft in highey compression time and those chosen as

larger blogks will deferiorate the image quality.

119

k. i

84
Mean image {Domain)

256
Qriginal image {Range}

Figure 1: Obtaining mean image from original

image
A

All range blocks are classified into two classes, either as
a shade block or rougi; block according to the variance of
the block. The variance of each range block can be
calculated using the equation .

Var(R) = UB? Z(r; ;- [T
Where
R - range block
B - size of the block
;- pixel intensity value at
position (i,j)
jt, - mean of the block

Q)

If the variance of the range block is less than a threshold
value E,, then the range block is of type shade block.
The shade block can be approximated by a value equal to
the average pixel intensity value of the block. These shade
blocks are coded simply by the mean value of the range
block. All other blocks of variance greater than the
threshold value are termed as rough fype blocks. The

rough blocks are coded by affine transformations.

For each range block, a best matching domain block is
searched. The affine transformation of the pixel values
{that is, a sealing and Fotation) is found that minimizes
the MSE differenee hetween fhe trusformed domain pixel

values and the range pixel values. The transformation can;

be represepted by the equation.

o

LTS

PRt

4GS Yol.1 Neo.2 Sep - Qcf 2005

al 0
0a?

il

O is orthogonal transform that consists of a rotation of
a multiple of 90 degrees .

g(x]] xg) = (
where
gp is affine mapping.

a, , a,are positive integers;

(bl, b2) is the translational vector,

Given an image f to be encoded, a collection of
transformations are found. The set of all transformations

are stored.
For a fixed image, more transformations lead to better

fidelity but worse compression ratio.

Finally, a header is attached for each range block to denote
its coding status as either coded by mean or affine
transformations. Therefore, the decoder can correctly
reconstruct each coded range block according to the
header. The fractal codes are transmitted and stored.

I fractal compression with edge detection [1], one of the
edge detection masks is applied over the range and domain
images before encoding is performed. The images with
its edges detected are obtained in this marmer. Each pixel
in the image will be either part of an edge or an interior
pixel. The range and domain blocks are now classified
by checking whether any of the pixels in each block
contains an edge pixel. In this way each block can be
either an edge block or an interior block, While comparing

between the range and domain block four cases arise:
If r,is a range block and d, a domain block

1. r;and d, are both interior blocks (int/inz),
2. r;and d, are both boundary blocks (bnd/bud),

3.r, is an interior block whereas d, is a boundary
~ block(int/bnd),

4. ri is a boundary block whereas d, is an interior
block(bnd/ing).

120

In the first case the range block does not contain an edge
pixel. Hence itis compared with all blocks in the domain
which has no edges, The mean squared error is calculated

in each case and the minimum is chosen.

In the second case, the range block is an edge block, ie, it
contains a pixel which is part of an edge. Therefore while
coding only the domain blocks with edpes are considered.
In a similar way the mean squared error is calculated and

the block with minimum error is stored.

The third and fourth cases which are also considered in
the conventional fractal coding procedure, can be assumed
to contribute little to the PSNR performance of the
compression, It has therefore been eliminated in this paper.
This reduces the computational complexity and the time

taken for encoding is also drastically reduced.
3.2, Proposed algorithm for encoding

A proposed algorithm on how the paper is being

implemented is given below:

flg and flge are flags used to indicate whether a block is
an edge block or an interior block, in the original and
mean images respectively.

1. Read the input image.

2. Obtain the mean image by averaging the original image.
3, Perform edge detection on the ofiginal image.

4. Perform edge detection on the mean image.

5. Partition the range image into fixed square blocks of
size 4x4.
6. Partition the domain image into fixed square blocks of
size 4x4.
7. Traverse through the range blocks,

if any of the pixels in the block is an edge pixel,

then

 set flg=1

else

set flg=0

Fractal Image Compression with Edge Detection

8. Traverse through the mean image block, if any of the The Laplacian mask has beenused for the edge detection.

ixels in the block i ixel . .
pixels in the black is an edge pxel, The image with the edge detected is stored in a separate

then
set flge=1 array. As mentioned in the general algorithm, the flags
else fig and flge are used to indicate whether a block is an
set fige=0. edge block or an interior block.
9. Calculate variance for each range block.
{f variance > threshold The images used for testing the program arc of size 256 x
then 256, 24 bit bitmap color images and 8 bit bitmap gray-

go tostep 10 level images. The mean image size got from averaging

else

store current block as shade block. the original image is of the size 64 x 04.

The performance is compared taking the following

10. For the current range block, .
: parameters into account:

if flg=1
perform comparison with each domain 1. Compression time
block having flge=1 ii. Decompression time
else

iii. Compression ratio

iv. PSNR (Peak Signal to Noise Ratio)

perform comparison with each domain
block having flge=0.
11, Perform various affine transformations. 4.1, Results

12. Choose domain with minimum MSE. The table 1 sh b s f) ith ed
13. Store the corresponding transformations. e table 1 shows the results for compression with ¢Cge

14. Go-to step 7 until entire image is coded. detection and it is compared with the results obtained for

15, Stop. compression without edge detection.
3.3. Decompression Image | Compr | Compr | Decompr PSNR
ession esston ession (dB}
Decompression of an image is simple. The mean image Ratio Time Time
d the fractal codes are stored in the fractal code book (Secs) _(sees)
and the fractal codes are stored in the fractal code book. Due (914447 | 27.8440 | 0.1710 316.0896
The mean image is obtained from the code book. The Lena | 90.0408 | 61.9530 | 0.1880 28.9400
. Parrots | 90.5777 | 56.3750 | 0.1880 27.5618
stored transformations are applied to the mean image Pepper | 89.4392 | 53.4060 | 0.1870 26.0626
which is the domain image. Once all the transformations
are performed, the decompressed image is obtained. Table 1 Results for Compression with Edge
Detection
Image | Compr | Compr | Decompr PSNR
ession ession ession (dB)

4. IMPLEMENTATION AND RESULTS . . .
Ratio Time Time

(Secs) {secs)
Dune | 91.4447 190.094 | 0.1880 37.3389

Fractal image compression with edge detection for both

color and gray scale images in the spatial domain has been lena 90.0408 | 151.188 | 0.1880 29.6798
. o . Parrots | 90.5777 | 127.588 | 0.1870 28.1308
implemented in this paper. The range and domain block Pepper | 80.4392 | 176.063 | 0.1870 26,9581

considered is of size 4 x 4. The image partition scheme

considered is the fixed square partition. Affine
Table 2 Results for Compression without Edge

wansformati i . . :
nsformation and scaling are used to compare the blocks Detection with Color Image

121

JCS Vol.1 No.2 Sep - Oci 2005

The comparison indicates that proposed compression
method leads to significant reduction in the compression
time and it also gives decompressed image with the good
quality. The figure 2 (a) shows the original image, figure
2 (b) shows the decompressed image without edge
detection and figure 2 {c) shows the decompressed image
with edge detection. Figure 2(d) gives a comparison of

the compression times for gray level Images

@ (b)

Compression Time af varicus Images

for ablaock of size 4x4

160
140
120

100
80
60

40
20

0 r
a4 g =5 *=
W G S ey
v 7

imagos

—=——1teration Free -——@—Edge Detectlon

@

(a) Original image
(b) Decompressed Image (without Edge detection)
{c) Decompressed Image (with Edge detection)

(d) Comparison of Compression Times for Gray Level Images

Figure 2

References

[1] Kamel Belloulata and Janusz Konrad, April 2002,
“Fractal Image Compression with Region Based
Functionality,” JEEE Transactions on image
processing, vol. IL, No. 4, pp. 1-12,

[2] Hannes Hartenstein, Mathias Ruhi, and Dietmar
Saupe, July 2000, “Region-Based Fractal Image
Compression,” 1EEE Transactions on Image
Processing, vol. 9, No. 7, pp. 1171-1184.

[3] Amaud E. Jacquin, January 1992, “/mage Coding
on a Fractal Theory of Ilterated Contracted Image
Transformations,” IEEE Transactions on Image
Processing, vol. 1, No. 1, pp. 18-30.

[4] B. Wohlberg and G. de. Jager, December 1999, “4
review of the fractal coding literature,” IEEE
Transactions on Image Processing, vol. 8 No. 1, pp.
1716-1729.

I51A. K. Jain, “Image data compression. 4 review” Proc.
IEEE, vol 69, March 1981,

[6] Rafael C.Gonzalez and Richard E. Woods, 2003,
“Digital Image Processing”, 2™ edition., Pearson
Education, Inc.

{7]. Hsuan T.Chang and Chung J. Kuo “/teration — firee
Jractal image coding based on efficient domain pool
design,” IEEE Transactions on Image Processing,
vol.9 , No.3 , pp. 329-339, March 2000,

[8]. Raouf Hamzaoui and Dietary Saupe, “Combining
Fractal Image Compression and Vector
Quantization,” IEEE Transactions on Image
Processing, vol.9, No.2, pp. 197 - 208, Feb. 2000.

[91. HIsuan T. Chang, “Gradient Match and Side Match
Fractal Vector Quantizers for Images,” IEEE
Transactions on Image Processing, vol.11, No.1, pp.1-
9, Jan. 2002, |

[10]. Y. Linde, A. Buzo and . Gray, “Algorithm for vector
quantization design,” IEEE Transactions on

Communication, Vol.28, Jan 1980, P8§4-P95.

