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Abstract

Artificial Intelligence (Al) has progressed considerably
in recent years and now influences all parts of society and
jobs. Al is beneficial to many fields, such as gaming,
language processing, healthcare, production, education, and
others. This tendency also affects the realm of cyber security,
in which Al has been used in cyber space for both attack and
defense. False alarms are a problem for end-users which
disrupt business by delaying any essential response and
generally damage efficiency. The fine-tuning process is a
compromise between eliminating false alarms and
maintaining the level of safety. In this paper, an Ensemble
Deep Generative Adversarial Networks (EDGAN) is
developing for the classification of threats in case of large
network. The EDGAN is designed in such a way that it
undergoes series of process to eliminate the threat in a novel
way. The simulation is conducted to test the efficacy of the
model and the results of simulation shows higher rate of

security in classifying the instances than other methods.
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I INTRODUCTION
Malware identification is a major concern in the world of
computer security nowadays, since many types of software
give users an abundance of benefits, but they also carry some
risk. Malicious samples are rapidly increasing, according to a
recent study. Detecting malware has become increasingly
difficult due to the sheer volume of samples [1].

Malware analysis and detection techniques have been
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examined extensively by a huge number of researchers. In
the past, commercial antivirus programmes have relied on
signature-based methods that require a database for storing
the malware pattern data. Due to the fact that even tiny
changes to malware can alter its signature, signature-based
detection will continue to have serious limitations as more
malware is developed that uses encryption, obfuscation, or

packing to avoid detection [2,3,4].

The analysis necessitates simulating the malware
operational environment, which can be problematic given
the variety of malicious behaviours. Malware behaviour
monitoring might take a lengthy period since some malicious
actions can be undetected before an attack. Static analysis has
the advantage of quickly detecting large malware samples.
Static analysis is hampered by numerous encryption and
obfuscation methods. Static analysis makes it harder to
capture the malware features since attackers can make

deliberate changes to malware.

A number of algorithms on machine learning [5,6,7] are
now being researched for use in malware detection in order to
address the issues listed above. However, for analysis and
feature extractionrely on the domain knowledge. With these
features, a machine learning model can be trained and a fresh
file sample can be classified. However, the fact that malware
is continually being generated, updated, and modified is a

severe issue[8,9,10,11,12].

In this paper, an Ensemble Deep Generative Adversarial
Networks (EDGAN) is developed for the classification of
threats in case of large network. The EDGAN is designed in

such a way that it undergoes series of process to eliminate the
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threat in large scale Internet of Thing (IoT) network.

II RELATED WORKS

The first-time data mining was used to detect malware
was by Schultz et al. [13]. Ripper [14] is a rule-based system
for data mining that employs Naive Bayes learning to find
pattern features. It takes harmful code as input and classifies
it. For data mining, Kolteret al. [15] found that employing n-
gram features rather than non overlapping features produced
better results. According to their findings, the decision tree is

the most effective method for making a decision.

Instead, Saxe and Berlin [16] advocated using a neural
network to separate malicious code from benign code. Their
research includes calculating the entropy histogram via input
binary data, where counting the total executions of
contextual byte data and metadata extraction from the DLL
imports and execution files. One by one, each of these four
kinds of features is converted to a 256-dimensional vector. In
aneural network, unidentified samples are categorised using
feature vectors that have been learned. Their TPR is 95.2%,
while their FPR is 0.10%.

There are also some fresh approaches to detect malware.
There is an image-based malware categorization approach
described by Nataraj et al. [17]. Malware data of binary type
is converted into an image of gray scale type using a kKNN
classifier. It leverages global features from the image and
hence the attacker makes local changes in order of avoiding

them.

Using dynamic analysis and image feature processing,
[18] compared two approaches to image feature processing.
Using image features as a basis, the researchers were able to
demonstrate that the method is scalable, accurate, and
efficient. They also discovered that this new method works
justas well with malware samples that have been compressed

as well as those that have been uncompressed.
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Unsupervised clustering learning using structured
information was introduced by Kong and Yan [19] for
malware classification. In order to cluster the samples of
same family, it will use a distance matrix-based
discriminating learning algorithm to extract the fine-grained
features of the malware function call graph. After that, an
ensemble classifier uses these malware distance pairs for

categorization.

N-gram characteristics were introduced by Santos et al.
[20] as a way of differentiating between malicious and
benign software. K-nearest samples with the most similar N-
gram characteristics are most effective in detecting unknown
malware, according to their findings. Another way to
discover malware is to look at the frequency with which an

APIlis called. This is known as a -gram.

For this reason, some studies have begun to combine
static and dynamic features in order to more correctly and
efficiently perform malware detection. [21] A malware
detection technique was proposed by Santos et al. [22] based
on machine learning that used information from static and
dynamic analyses of harmful code. SVM classifier has an
accuracy of up to 96.6% in detecting malware. Studies
showed that combining static and dynamic analysis yielded

better results than doing it independently on their own.

Most of these machine learning-based malware
detection technologies rely largely on expert expertise when
it comes to the construction of their features. Human-
designed features have numerous issues as malware evolves
and grows, necessitating large amounts of effort and money
to manually update them when new malware emerges. As a
result, the goal of this research is to lower the feature
engineering cost, while also extracting usable information

from large amounts of raw data.
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III PROPOSED METHOD
In this section, an EDGANCclassifies the cyber security
threats or malware in large scale Internet of Thing (IoT)
network. The EDGAN detects the malware using binary
classification, where it receives the raw data files as its input
and the output is represented in the form of a discrimination
probability, which indicates the likeliness of being a

malware.

Therefore, to concretely attain the task of binary
detection, the proposed EDGAN is split into two different
segments. The former pre-process the sample is given as
input data and extracts binary data form of the executable
file. The generation of gray scale image is followed by the
extraction of opcode sequence using a decompilation tool,
followed by the metadata feature. The latter uses EDGAN to
learn from the opcode sequence and grayscale image. The
ensemble stacking is applied to integrate the outputs of two
learning patterns namely the opcode sequence and grayscale
image in order to obtain the predicted results.
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Figure 1: Proposed Malware Detection Model
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Using the raw data, EDGAN learns three different
feature sets: harmful file structure features from an image
(grayscale type), pattern features of malicious code from the
opcode sequence, and finally malicious code pattern
features. In order to describe the global information, a
metadata features on the feature sets reflects local pattern
information. The following section goes into detail about the
EDGAN design and how it detects threats.

3.1 Learning Malware via GAN

GAN networks are introduced in this section, along with
a description of how malware structural features can be built
using gray scale images learned by GAN. Using this
technique, malware binaries can be seen as grayscale images,

which reveal the structural raw fileproperties.

3.1.1 Generation of Grayscale Image

Raw data must be processed and turned into a format
(image) before it can be used to create a virus grayscale
image. A binary stream file is used as input data instead of an
executable file. To use the binary stream file, simply
converted every four bits to a hexadecimal value. The
hexadecimal number range is 0 to 16, and the grey value of a
256-pixel is formed by adding two hexadecimal integers of
the same length. This straightforward mapping operation can
turn the original RGB data into a grayscale image. For each
pixel grey level, the binary stream gets segmented over each
8-bit data and then ordered consecutively to create the

appropriate grey image.

3.1.2 Data Preprocessing

The study preprocesses the image to meet the GAN input
data criteria. The input picture data is the same size when
GAN performs image classification. The image data should,
in general, be the same width and height. It is purely for the
sake of saving time during the convolution process. Because
executive files come in a variety of file formats, the sizes of

grayscale images vary widely.
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When it comes to normalisation, we apply an image
scaling method called the bilinear interpolation algorithm. In
order to determine the pixel value, it uses the 4-neighborhood
pixels. This method outperforms nearest neighbour
interpolation in terms of quality. The more information the
GAN receives from a larger normalised image, where the
detection result will be improvedon the network. As a result,
the normalised grayscale image size has been determined to

be 32x32.

3.2 Opcode SequenceLearning

The focus is on the opcode sequence, which the study
uses to discover harmful sequence characteristics and
patterns using EDGAN. Decompiled files yield a list of
opcode sequences. These sequences reflect the logic of the
code and the execution of the programme in the executive
files themselves. As a result, GAN can extract from them
malicious code sequence traits that correspond to highly

malicious behaviour.

3.3 Extraction of Opcode Sequence

The study extracts the opcode sequence and then learns it
from the raw executive files. In order to resolve malware into
assembly instructions, a popular decompilation and
debugging tool is used. The opcode sequences length is
affected by the size of the opcode set during opcode sequence
extraction. More types of opcodes will be accepted if the
opcode set is expanded. Given the large amount of noise data
and the difficulty of learning with GAN caused by a long
opcode sequence, we must keep the opcode set size within a
suitable range and only include the valid information. Since
all decompiled.asm files are treated as text, we use
vocabularies to represent the instructions within them. The
low-frequency vocabulary is then filtered out using

frequency statistics.

The study classifies each vocabulary frequency using a

random forests model, which may assign a value to each
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feature importance based on its frequency. When selecting
vocabulary, we look for ones that place emphasis on a certain
quality. After the digitisation of the opcode sequences, the
GAN is applied over it. The study uses one-hot encoding to
attain the digitisation, which is mapping transformation for

the generation of a sparse vector.

3.4 Learning Long Sequence by GAN

To understand long-term dependencies and context,
GAN uses loss to flow backwards via larger timestamps.
GAN makes and enforces rules for the Constant Error
Carousel (CEC) state. To detect malware, a GAN network
will learn from the opcode sequence.
If the sequence is long, a GAN has a hard time training
properly, even if it can collect time series. The size of the
executive file determines the size of extracted opcode
sequence. Ramnit malware samples, for instance, had a
sequence length of 36,000. When the input sequence length
exceeds 200, however, GAN performance rapidly degrades.
So, it is vital to figure out how to use a GAN network to

process extremely long sequences.

When working with GAN networks on very long
sequences, Truncating and Padding (TAP) is a simple yet
effective technique. When a sequence is too long, TAP trims
it down to the shortest possible length and then uses a
predetermined identifier to pad the ends. It quick and easy,
but it sacrifices a lot of data in the process because of the
truncation. A technique known as Truncated GAN through
time limits the greatest distance an error can travel by adding
a time window constraint. Since only the nodes inside of the
window are updated, no nodes outside of the window are
affected by error propagation or gradient calculation.
Because the BGANTT calculation cost increases if the GAN
network is too long, but it improves computing efficiency by
sacrificing a small portion of accuracy. Additionally,

abbreviated BGANTT is better suited for online learning due
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to its ability to swiftly adjust to the newly created portion of a

lengthy sequence.

The study first partitions an opcode sequence into several
subsequences, with each subsequence length equal to the
truncated BGANTT window length. Once this is done, we
just perform a full BGANTT on each subsequence, which is
the same as performing only a truncated BGANTT on the
entire sequence. Most importantly, this makes it possible for

GAN to work on multiple sequences at the same time.

3.5Subsequence Selection and Fusion

As aresult of the above subsequence training technique,
the GAN network receives subsequence as input and
generates an output for each subsequence in turn. GAN
concluded that this subsequent event is malevolent based on
how likely it is. However, particularly for malware samples,
subsequences might have a lot of noise in them. There are
many subsequences of this type of sample that are safe
because many malware programmers simply insert a
malicious code inside benign to begin with. Therefore,
malware subsequences must be well-maintained. To clean
these subsequences and give a dataset to GAN, we devised a

subsequence selection algorithm.

To finish subsequence selection, we use the GAN
network by itself, without using any extra models. A GAN is
used in binary classification tasks to determine whether a

class is negative or positive.

3.6 Stacking Ensemble

EDGAN recovers some malware metadatabecause
GANs can get a global featuresof malware data and it
captures the local features and metadata features as well. The
study easily discovers metadata elements and starting
address of byte file, as well as sizes, rows and length
ofdecompiled file by looking at decompiled files.This model

uses the original training data to create training dataset and
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then exploit the output. Stacking ensemble method
aggregates the outcomes of heterogeneous learners using
GAN model. The study combines the three components by

stacking ensemble to get a final detection result.

IV RESULTS AND DISCUSSIONS
In this section, the validation of EDGAN is conducted to
check the efficacy of the entire model. The model is validated
against various models like Ensemble CNN-RNN (ECR),
Ensemble CNN-MLP (ECM) and Ensemble CNN-DBN
(ECD). The simulations are conducted in terms of validating

its accuracy, precision, recall and F-measure.

The datasets consist of 40000 samples out of which
21000 samples are of malware one and remaining ones are
benign type. The simulation is conducted on 15 11th
generation processor running on a primary memory of 16GB

and graphical processing unit of 16GB.
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Figure 2: Accuracy

Figure 2 shows the results of accuracy between the
proposed EDGAN and existing ECR, ECM and ECD. The
result of simulation shows that the proposed EDGAN model
is effective in classifying the features of malwares over a

large IoT network.
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Figure 3: Precision

Figure 3 shows the results of precision between the
proposed EDGAN and existing ECR, ECM and ECD. The
result of simulation shows that the proposed EDGAN model
has higher level of precision in classification process. The
result thus shows that the correctly predicted positive

observations are high using EDGANSs than other classifiers.
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Figure 4: Recall

Figure 4 shows the results of recall between the proposed
EDGAN and existing ECR, ECM and ECD. The result of
simulation shows that the proposed EDGAN model has
higher level of recall rate than other methods, where the total
number of retrieved instances is accurate to attain the
improved rate. It is seen that the EDGAN model has higher

rate of true positives than other parameters.
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Figure 5: F-measure

Figure 5 shows the results of F-measure between the
proposed EDGAN and existing ECR, ECM and ECD. The
result of simulation shows that the proposed EDGAN model
has higher level of F-measure than other methods in case of
classifying truly the instances. Even in the presence of
uneven distribution of classes, the proposed method obtains
higher rate of weighted average on precision and recall
values. Since the rate of true positive instances is high, the

occurrence of errors tends to get reduced.

V CONCLUSIONS

In this paper, the malwares in a large scale [oT network
are detected using EDGAN model that uses stacked
ensemble of GAN to learn from varied types of feature
extracted from input data. These features include opcode
sequence and grayscale image, thereby fusing them to find
the predicted output. The experiment is conducted on 40000
input samples out of which 1-fold is utilised for validation.
The results of validation show an improved accuracy of 99%
with reduced FPR of lesser than 0.1%. The comparisons with
conventional method show that the proposed method is

accurate in predicting the malwares than other methods.
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