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Abstract

In Deep Learning, a Convolutional Neural Network
(CNN) is used to study the various aspects of visual
resources. CNN features can be used for advanced tasks like
classification and segmentation of images, detection of
objects and other complex tasks. The state-of-the-art models
consist of stacked convolutional layers. But modern
architectures construct convolutional layers by using new
ideas. They allow CNN to work more efficiently. This paper
analyses the performance of some important CNN

architectures in particular applications.
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L. INTRODUCTION
The structure and working of human brain are the
inspiration behind the neural network and its basic building
block is termed as neuron. Neuron represents a mathematical
function and provides an output for the input provided. A

layered architecture is used to organize neurons.

Convolutional neural network [1][2] is a neural network
model and it comprisesan input layer, one or more hidden
layers and one output layer. The input layer
collectsadequateinformation from the given source. These
data are used by the network for processing or learning. The
input layer feeds the data into a hidden unit. The hidden unit
(convolution layers)extracts the features and transforms it

into something that the output unit (fully connected layers)

canuse.
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The information collected by every node in a particular
layer is passed to every node in the next layer. Each
layermakes changes in the input signal. It is necessary to
combine more hidden layers in the existing networkto make
the network deeper. Figure 1.1 explains thestructure of CNN.

CNN extracts different patterns of a given picture element.

ImageNet project is a visual databasecontaining several
hundred images. A software contest named ImageNet Large
Scale VisualRecognition Challenge (ILSVRC) has been
conducted by Imagenet project. It analysesdifferent
algorithms for detection and classificationof images [3].
There are several CNN architectures [4][5] such as AlexNet,
VGGNet, ResNetInceptionNet, DenseNet, XceptionNet,

and SENet. All these architectures are ILSVRC winners.
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Figure 1.1 Architecture of CNN [6]
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Figure 2.1 AlexNet [7]
This paper compares the performance of the
architectures mentioned above and studies the performance

indifferent applications.

II. RELATED WORKS
2.1 ImageNet Classification with Deep Convolutional

Neural Networks [6].
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AlexNetwas the first deep CNN architecture that
offeredremarkable performance in image-recognition and

classification.

AlexNet[7] holds eight learned layers which comprise
five that are convolutional and three fully connected.It uses
650,000 neurons and incorporates 60 M parameters. Figure

2.1 depicts the detailed model of AlexNetl.

2.2 Very deep convolutional networks for large-scale

image recognition [8].

VGGNet has introduced an effective design principle for
deep CNN architecture. Instead of11x11 and 5x5filters VGG
introduces 3x3 filters. The 2x2 and 3x3 filters are connected
back-to-back.These back-to-back filters replace the large
size filters.Figure 2.2 representsVGG[9] Net and its layered

architecture in detail
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Figure 2.2 Architecture of VGG

2.3 Going deeper with convolutions [10].

InceptionNet presents a new concept called Inception
block. It uses three filters of different sizes as shown in figure
2.3. These filters are capsulated into one inception block. It

exploits the idea termed as 'split, transform, and merge'.
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Figure 2.3 An Inception Block [10]
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2.4 Deep Residual Learning for Image Recognition [11].

A 152-layered deep CNN is the idea behind ResNet. It is
deeper and more accurate than the deep nets proposed before.
In CNN, the original mapping is represented as F(x). But in
ResNet, it is  F(x)+x, where x is an input to the layer.

Shortcut connection is used to achieve this result.
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Figure 2.4ResNet architecture.

The shortcut connections are usedto carry out identity
mapping. Outputs from the shortcut connections are added
to the outputs from stacked layers. Figure 2.4 illustrates the

concept of ResNet.

Accuracy gain of Deep residual netthe result an
enhanced Inception-ResNet,isdue to an improved version of

InceptionNet.

2.5 Inception-v4, Inception-ResNet and the Impact of

Residual Connections on Learning [12].

Inception-V4 and Inception-ResNet are inspired
byInceptionNet.By making the Inception layer deeper and
wider, more efficient Inception-V4 is introduced.
Thenumber of Inception modules in Inception-V4 is greater

compared tothat of Inception modules in Inception-V3.
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Figure 2.5 Inception-ResNet.

Inception-ResNetis a modified version of ResNet. It
comprises residual learning and inception block. Inception
ResNet and plain Inception-V4 have the same power. Figure

2.5 describes Inception-ResNet module.

2.6 Xception: Deep Learning with depth wise separable

convolutions [13].

Instead of using the inception
modules,XceptionNetintroduces depth-wise separable
convolution [6]. 1x]1 Convolution is used to obtain cross-
channel correlations. The spatial correlation of every output
channel is obtained by mapping the spatial correlation of

each channel.

Each channel of an input goes through spatial
convolution independently. Then a point-wise convolution is
performed on it. This makes depth-wise separable
convolutions. Figure 2.6 shows the architectural details of

XceptionNet.

There are 36 convolution layers of 14 modules. All

thesemodules have linear residual connections around them.
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Figure 2.6 Architecture -XceptionNet. [13]

2.7 Aggregated Residual Transformations for Deep Neural
Networks [14].

ResNeXtis the combined version of VGG and
GoogleNet architecture. One 3x3 filteris used inside a 'split,
transform and merge block'.It also adoptsthe idea of residual
learning from ResNet.
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Figure 2.7 ResNeXt Architecture

Figure 2.7 shows the implementation of ResNeXt.

There are 14 modules to incorporate all 36 convolution
layers. These 14 modules have linear residual connections.
This is the simple architecture which Shows VGG/ResNet

strategy.

ResNeXtcarries out a series ofoperations on the input

provided. The operations provided by ResNeXt
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I) Split: The given vector x undergoes a split operation. The
result of this operation is a low-dimensional representation of

the given input.

i) Transform: The low-dimensional representation is
transformed into wixi (x stands for the input vector and w for

the filter weight).

iii) Aggregate: The wixi in all representations are added

together.

2.8 Densely Connected Convolutional Networks [ 15].

The Densely-Connected feed-forward network collects
all feature maps from its previous layer. These feature maps,
along with its own feature maps, are provided to the inputs of
the next layer as depicted in figure 2.8. The model obtained
after training is highly parameter-compliant.

Feature maps of different layers are concatenated together.
So, each layer receives input from subsequent layers and

improves efficiency.

One of the advantages of using denseNet is that it
resolves the problem associated with the vanishing gradient.
It ensures the reuse of features and also strengthens its

feature-propagation.

Figure 2.8 DenseNet.
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2.9 Squeeze and Excitation networks [16].
SE blocks models' interdependencies between channels.
These inter dependencies are used to recalibrate channel-

wise feature maps.

For any given transformation consider a function maps
the input X to the feature maps U where UeRH X W X C. A
squeeze operation is performed over the features U. The
aggregated feature maps are aggregated with their spatial
representations (H X W). The result of this operation is a

channel descriptor.

With the help of the channel descriptor Excitation operation
produces pre-channel modulation weights. These weights
areapplied to feature map U, and the output received is
considered as the output of the SE block. The detailed
description of all these operations is depicted in Figure2.9.
Thisoutput is directly fed into the subsequent layers of the
network.
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Figure 2.9 SE block

Fyare ()

No: of Top-1 | Top-5
CNN Architecture Year Dataset Parameters | Error Error
AlexNet 2012 ImageNet 60M 40.70% | 18.20%
VGG 2014 ImageNet 138 M 24.70% 7.20%
GoogleNet 2014 ImageNet SM 32% 6.67%
Inception-V3 2015 ImageNet 24M 21.20% | 5.60%
Res-Net-152 2015 ImageNet 26 M 22.85% 6.71%
Res-Net -200 2015 ImageNet 27M 21.70% 5.80%
Xception 2016 ImageNet 23 M 21% 5.50%
Inception - V4 2016 ImageNet 4a3M 20% 5%
Inception - ResNet- V2 2016 ImageNet 56 M 19.90% | 4.90%
DenseNet-121 2016 ImageNet 26M 25.02% 7.71%
DenseNet-161 2016 ImageNet 27M 22.33% | 6.15%
Res-NeXt-101 2016 ImageNet 25M 20.40% 5.30%
SENet-154 2017 ImageNet - 18.68% 3.79%

Figure 3.1 Comparison of different CNN architectures
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III. COMPARITIVE STUDY
The overall performance evaluation of each architecture
on the ILSVRC Imagenet Competition is compared as shown
in Figure 2.10. Study shows that every architecture used the
same dataset, ImageNet dataset. It shows that SENet has3.79

top S-error rate for image classification.

IV. APPLICATIONS OF CNN
CNN can be used to detect Face Anti Spoofing [17] in real
life. The dense layers of the ResNetl52 model trained
repeatedly to obtain better results in face anti-spoofing
task. CNN shows better results in Heritagelmage
Classification [18].SE-ResNet-50 provides the best
performance on heritage image classification. CNN plays a

crucial role in medical fields.

Diabetic retinopathy stage classification can be
performed using CNN [19][20][21][22][23]. Concatenation
of AlexNet, VGG and Inception V3 provides better results
for DR image classification. CNN can also be used to detect
DR[24]. CNN provides better results in the detectionof
defectsin fabrics also [25]. GoogleNte provides 100%

accuracy in detecting defects in Fabrics.

Inception-v3 Shows better performance in Flower
Classification [26] while AlexNet deep learning model
shows better resultsin vegetable classification [27]. It is

possible to classify Categorical images using RESNET [28].

V. CONCLUSION ANDFUTURE ENHANCEMENT

Atpresent CNN plays a vital role in the classification and
predictionof images. With the advancement in technology
different CNN architecture has evolved over time. Figure 3.1
describes the comparison of different architectures. The
study shows that the architectures after AlexNet classify
images with reasonable accuracy. The architecture that
classifies images with a top-5 error rate of 3.79% is SENet. A
combination of two or more concepts may help

people produce better results.
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