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ENHANCING CHRONIC KIDNEY DISEASE DIAGNOSIS WITH FPA - DNN
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ABSTRACT

Chronic kidney disease (CKD) is a critical global health
concern, requiring accurate and early diagnosis to prevent its
progression. Deep Learning (DL)models have shown
promise in automating CKD classification from patient data,
but the challenge lies in optimizing these models for peak
performance. In this study, we propose an advanced
approach for CKD classification, introducing the Flower
Pollination Algorithm (FPA) for hyperparameter tuning of a
Deep Neural Network model. To further enhance model
performance, we employ an algorithm known as
Oppositional Crow Search (OCS) which is utilized in feature
selection and fine-tuning. The integration of FPA and OCS
not only optimizes the DNN architecture but also refines the
dataset for improved feature relevance. Experimental results
demonstrate that the FPA-DNN model, guided by OCS,
outperforms other conventional approaches in terms of
accuracy, sensitivity, specificity, and F1-score. This research
showcases the potential of metaheuristic algorithms in
improving DL models for CKD classification and opens
avenues for enhanced medical diagnostics through artificial
intelligence techniques. The results from the simulations
demonstrated high exceptional efficacy for FPA-DNN
approach.

Keywords: Internet of Things, Flower Pollination
Algorithm, Oppositional Crow Search, Chronic Kidney

Disease.

I. INTRODUCTION
In the realm of technology, the Internet of Things (IoT)
represents transformative paradigm, enabling seamless
connectivity and communication between devices, sensors

[1], and systems through the internet. IoT in healthcare
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enables real-time monitoring and improved patient care.
Medical devices collect vital data for personalized treatment,
remote patient monitoring, and telemedicine. It addresses the
need for efficient, cost-effective healthcare, streamlining
processes, reducing errors, and enhancing patient care and
accessibility. Deep learning (DL), a subset of Al, excels in
healthcare. It trains neural networks to analyses vast clinical
data. Using Convolution Neural Network (CNNs) and
Recurrent Neural Network (RNNs), DL processes medical
images, EHRs, genomic data, aiding disease detection,
outcome prediction, and treatment optimization. Its
robustness aids faster, accurate decision-making, improving

patient care.

Chronic Kidney Disease (CKD) is a prevalent and
serious medical condition that demands accurate and timely
diagnosis. Deep Learning (DL), particularly Deep Neural
Networks (DNNs), shows promise in automating disease
classification. To optimize DNNSs, this study suggests using
the Flower Pollination Algorithm (FPA). FPA is inspired by
flower pollination behavior and aids in searching high-
dimensional DNN parameters for the best configuration. The
study also introduces the Oppositional Crow Search (OCS)
algorithm to further enhance optimization. OCS uses
opposition-based learning to improve efficiency, enhancing
the exploration and exploitation capabilities of the model. By
combining FPA and OCS in the context of CKD
classification [2], the proposed FPA-DNN model aims to
enhance CKD diagnosis accuracy and efficiency. This
research contributes to medical diagnostics by integrating

advanced optimization algorithms with DL in healthcare.

II. RELATED WORKS
Chen, G et al. [3] introduced an Adaptive Hybridized
Deep CNN to efficiently detect and classify kidney disease
subtypes, specifically focusing on kidney cancer for early
diagnosis. Utilizing DL methods, the AHDCNN model

enhances classification accuracy by reducing feature
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dimensions through a CNN-based algorithm. Patil, S et al.
[4] employed a model follows a three-phase methodology:
pre-processing involving image inpainting and median
filtering, followed by feature extraction using various
techniques including texture analysis Finally, an optimized
deep convolutional neural network is employed for
classification, enhancing prediction accuracy through

weight and activation function optimization.

Ma, F et al. [5] suggested Heterogenecous Modified
Artificial Neural Network (HMANN) as a key element for
prompt identification, segmentation, and assessment of
kidney failure. The methodology focuses on ultrasound
image pre-processing, specifically kidney segmentation,
wherein HMANN demonstrates notable accuracy gains and
a substantial reduction in contour delineation time. Kriplani
et al. [6] utilized 224 records from the UCI CKD dataset and
employed a deep neural network to predict the presence or
absence of CKD, achieving a high accuracy of 97%. The
model was built using cross-validation to prevent over fitting
and demonstrated superior performance compared to other
algorithms, offering a faster and digitized methodology for

accurate prediction of CKD in clinical settings.

Sudharson et al. [7] introduced an ensemble approach
that employs pre-trained DNNs, utilizing transfer learning
techniques. Three distinct datasets are utilized for feature
extraction with pre-trained DNN models (ResNet-101,
ShuffleNet, MobileNet-v2), and their ensemble predictions,
determined through majority voting, demonstrate superior
classification performance compared to individual models.
Suresh, et al. [8] introduced artificial neural network
algorithms to improve the diagnosis and prognosis of
Chronic Kidney Infection. Fourteen distinct properties
related to chronic kidney disorder patients were analyzed and
utilized to train an Artificial Neural Network.

Devika et al. [9] focused on leveraging ML and data
processing techniques to predict CKD. Various data mining
and ML classification approaches are explored, including
Naive Bayes, K-Nearest Neighbour (KNN), and Random
Forest classifier. The study evaluates and compares these

algorithms based on accuracy, precision, and execution time,
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ultimately identifying Random Forest as the superior
performer for CKD prediction. Kuo, et al. [10] presented a
DL approach employing transfer learning with ResNet
model on 4,505 kidney ultrasound images. Data
augmentation techniques, kidney length annotations, and
bootstrap aggregation were utilized to enhance model
performance and reduce over fitting.

Zhang, et al. [11] demonstrated the effectiveness of deep-
learning models in identifying CKD and type 2 diabetes
using fundus images and clinical metadata. Additionally, the
models showcased potential for predicting estimated
glomerular filtration rates, blood-glucose levels, and
stratifying patients based on disease-progression risk,
illustrating the potential of DL for early disease detection and
prediction. Bhaskar, et al. [12] presented a novel sensing
technique for automated kidney disease detection using

salivary urea concentration.

III. METHODOLOGY

The comprehensive method of FPA with DNN is illustrated
in Fig. 1. This model presented key steps such as data
collection, pre-processing, and feature selection (FS) as its
primary components before moving on to the classification
stage. The data collection module is designed to gather
essential information from Clinical Data Sources (CDS).
Furthermore, the gathered data undergoes pre-processing,
and the FS steps are employed to improve quality.
Subsequently, this methodology is applied for training. For
evaluating effectiveness of this approach, we conducted
simulations using clinical data in an online mode to assess its
ability to correctly classify data into either normal or disease
affected.

Fig. 1. Proposed model of FPA - DNNA
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A. Description of data

At this phase, the suggested system optimizes the
acquisition of patient data through IoT devices, gathering
information across three distinct data categories. Typically,
sensors connected to individuals collect specific medical
data over a defined timeframe. In FPA with DNN technique
results are examined utilizing well-established, initial data
repository consisting of 400 instances and 24 features [14].
To conduct analysis, a 10-fold cross-validation method was

employed.

B. InputPre-processing

Medical dataset may transform to more interpretable
form by 3 distinct methods. In the initial step, the input is
converted into its original form to simplify subsequent
computational processes. Next, listed values in the
repository are translated into numerical values, typically
represented by zero and one. To conclude, any gaps or
lacking values in the repository may filled by replacing

them with the median value.

C. FSModel Utilizing OCS

During this stage, the OCS algorithm is applied to select
the most optimal set of features from the pre-processed data
of CS model developed by Raj et al. [15], which was drawn
from the inspiration of the natural hierarchy of crows,
specifically their behaviors associated with foraging and
food acquisition. This model is built upon the dynamics of a
crow flock, including the preservation of food hiding sites,
food theft, and mutual tracking. Crows have a certain
probability of safeguarding their caches from being
pilfered. Fig. 2, depicts the initial and suggested positions of
crows (2). To enhance the effectiveness of the CS model, it
incorporates a differential method. An opposite operation is
initialized for all initial solutions, and through comparisons,
optimal one is selected as the best solution. The
implementation of the model is given in coming section.
During the community initialization phase, crow
community is assigned using F i, and the initialized
features of crows are distributed haphazardly within a

designated search region.

F.=F,,F,,....F wherei=123,...,n
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Typically, the optimization techniques begin with
original values that are then iteratively improved. A
comparison of these values results in the selection of perfect

one for the original value. To illustrate, let's take an example

where we have a real number represented asf € (g,h). Using

the definition of an opposite point, we can express it as

follows

Fig. 2. Universal technique of CS

f-j:gj-'-hj_fj (2)

In the OCS approach, the Fitness Function (FF) is
defined based on the objective function, with the primary
goal being the identification of the most favorable features

within the database images being used in the model.

OF,=MAX (Accuracy) (3)

A crow generates next location through random selection
from a group of crows, with each crow j'. A crow intervenes
location, denoted as P, at iteration iter, is determined using
the provided Eq. (4).

piiter+1 :{Pi,iter_‘_ri % A % [memj,irer_Pi,fzer] ffrjz A
(4)

Where, r,&r; are randomly selected values for crows &

J, respectively, ranging among zero and one. Flight length of

i,iter

crow i is A" at iteration ifer, location of crow P, memory
location is indicated by mend, and AP**" signifies effective
probability of crow j at that particular iteration. The most
recent updates to the crow's location as well as memory

special attributes are enhanced through the utilization of Eq.

o).

i,iter

mem"" "' = PY TIPS flmem” " I mem”™” Otherwise £ (5)
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The new position of the crow exhibits a significantly
high fitness value within the designated location. By
adopting this new position, the crow enhances its memory.
Upon reaching the maximum iteration limit, the optimal
memory position closely coincides with the objective. This
technique is represented in Fig. 3, for a visual representation

ofthe process.

D. Classification based on DNN

DL techniques extract high-dimensional features from
input databases, which enhance classifier performance,
especially when integrated with autoencoders (AE) and
Support Vector Mechanism (SVM) classifiers [16]. AE's
primary goal is generating appropriate codes to represent
input vectors. The associations between the input and output
of an encoder are described as ¢ = g, (W,b; u) and are
represented by Eq. (6).

/ | 9
c=flb+W*ul©) &

The activation function of an encoded neuron is
represented by /. Connections between the input of the
hidden layer and the b vector, representing neuron bias, are
established by W weight of the encoding unit. The u vector
corresponds to the input of the encoder section, while the
vector ¢ signifies the output of the encoding unit. This

relationship is illustrated in (7).

Fig. 3. OCS Flow chart
34

u=f(b+w,) (7)
Within this model the activation function is denoted as

f- Outcome of the autoencoder =g W.,b,W,b,ul. Its

objective function is given by,
N
Eip(ll'SC‘: E7+B Z KL (.’ (8)
q=1

The predefined cost function consists of two components.
Initially, EZ represents the objective function of the Neural
Network (NN), while sparsity weight is 3.

V4
57:12 ef+A(IIWI|+IIWII) 9)
2,5 2

Regularization unit A, a critical component employed to
address and mitigate overfitting concerns. Error vectors can
be defined by discrepancies among the intended outcomes

and real outcomes, as demonstrated here.

e.=lu™ =il (10)

In this scenario, where k takes on values from 1 to Z, it's
noteworthy to recognize that EZ represents the internal
weight of the Autoencoder (AE), where,

E,=E ;¢ (11)

A P i1 ilag 1P
KL(plp,)=plogL-+1-p)1 12
(p1p,) plog -=+1-pllog T — (12)

q q

.15 (il
pj_E;qu[u] (13)

Here, p represents the desired sparsity value, and p " is

defined as follows:

A Stacked Autoencoder (SAE) system is created by
interconnecting the components of the Autoencoders (Aes).
The SAE is formed by multiple AEs interconnected within

the encoder. AE with L-cascaded, is illustrated as.

Gsar =01 09 20...... 0g .
(14)
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E.Tuning utilizing FPA

Within the Flower Pollination Algorithm (FPA) [17], the
concept of pollination mirrors the principles of plant
reproduction. A scalable approach to address specific
optimization challenges is provided by flower and pollen
gametes. The most effective and dependable solution is
identified as flower constancy. In global pollination,
pollinators transfer pollen over long distances to reach more
suitable destinations, while local pollination occurs within
smaller regions, targeting unique flowers in shaded areas.
Global pollination introduces the concept of a "switch
probability," where the replacement of a stage triggers local
pollination. FPA incorporates four general rules, as outlined

below.

stant

v

a parameters FPA: the sze
wutial population and the maximum
number of eration and the amount of p

Calculation the ¢

random solutions and selection in current population

v

> For each steration t
v
Rand
greater than
v p " " .'v 1
Do loca Do global pollination
o mng the Levy
llination -
- distnbution and create
v a new population

Calculate the objective function
corresponding to new solutions

v
Update the best current solution

v

maximum number of
terations

Dusplay the best

solution

v
stop

Fig. 4. FPA flowchart
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e The Levy flight method is employed by pollen pollinators
in global pollination, encompassing live and cross-

pollination.

e Abiotic and self-pollination are included in local

pollination.

e The pollinators that foster flower fidelity are recognized as

insects.

e The regulation of the interplay is done with probability of a
switch. As such, the 1st and 3rd rules can be described as

follows.

Here, at iteration t,xplsigniﬁes the pollen vector, while
g, represents the most recent optimal solution. A scaling
factor, y=a, thus Levy’s distribution, is represented by L
[18]. Furthermore, L corresponds to a Levy distribution, as
depicted below.

/\><F\)\]><sinﬂ

L x 1 S>s,0 (16
s S'+2

Regarding to local pollination, both the 2nd and 3rd rules

are implemented, as detailed below: - () denotes a standard

gamma function.
X=X e xt— X (17)

Here, x;and x;, pollens from distinct flowers of the
same plant are represented.
In numerical terms, when , x; and x:( which are originate

from the same plant and are chosen from a comparable
community, this phenomenon is termed a 'local random
walk’. Here, e is generated from a uniform distribution
ranging between [0, 1]. Fig. 4, provides an illustration of the
workflow of the Flower Pollination Algorithm (FPA).

IV. RESULTS AND DISCUSSION
To guarantee the effectiveness of the FPA-DNN model, it
is imperative to apply the model extensively across various
domains. The following sections delve into the repository,
feature values, as well as achieved results. The assessment of
simulation results is based on a range of diverse evaluation

parameters.
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A. Evaluation of Result

Outcomes from the analysis of the OCS with FS technique
were evaluated against existing FS models based on their
optimal cost performance. The selected features are
presented in Table  and depicted in Figure 5. The table values
indicate that less effective FS performance was observed
with the CFS algorithm, where the highest optimal cost of
0.79 was achieved. In comparison, a moderate FS
performance was displayed by the PCA model, with an
optimal cost of 0.4570. While reasonable optimal costs were
achieved by the PSO-GS and GA-FS models, specifically
0.03656 and 0.03440, the optimal cost of 0.00986 was
achieved by the OCS-FS model. Additionally, it is evident
that a set of 12 features out of the original 24 was selected by
the OCS-FS algorithm, namely features 2, 4, 5, 8, 10, 12, 13,
14,16,19,20,and 22.

0.8

0.7 |
0.6 |
0.5 |
04 |
0.3 |
0.2 |

0.1 |

OCS-FS PSO-FS GA-FS PCA  CFS

Fig. 5 Evaluation of suggested model with others

based on cost performance

In Fig. 6, the confusion matrix from the execution of the
FPA with DNN technique is presented. A total of 248
instances were categorized as positive, and 147 instances
were categorized as negative by the FPA with DNN

technique.

200

true labe

100

8

0 1
predicted label

Fig. 6 FPA-DNN confusion matrix

TABLE I. EVALUATION OF FS METHODS

FOR CKD DATASET
Methods Best cost Selected features
OCS-FS 0.00985 2,4,5,8,10, 12, 13,
14,16, 19, 20,22
PSO-FS 0.03658 15, 12, 24, 23, 13, 20,

GA-FS 0.03441

1,2,3,4,5,6,7,8,9,
10, 11,12, 13, 14, 15,
16,17, 18

4,6,7,10, 15,17, 19,
22

PCA 0.04572

CFS 0.79001
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Fig. 7 Evaluation based on sensitivity and specificity

An evaluation of sensitivity and specificity of suggested
technique with existing [19-21] is depicted in Fig. 7. The
figure highlights that subpar performance in diagnosis was
shown by the Olex-GA approach, with a minimum value for
sensitivity and specificity. In contrast, improved results were
demonstrated by the LR technology. A moderate sensitivity
and specificity values were exhibited by the XGBoost
approach, both at 83.01%. Notable results were yielded by
the PSO technology, with a sensitivity of 88.05% and a
specificity of 81%. Reasonable results were demonstrated by
the DT framework, with a sensitivity of 90.37% and a
specificity of 89.26%. A slightly moderate performance was
displayed by the MLP technology, with a sensitivity of
92.32% and a specificity of 92.84%. On the other hand, the
least favorable outcomes were shown by the FNC method,
with a sensitivity of 95.66% and a specificity of 95.88%.
Furthermore, competent results were produced by the D-
ACO scheme, boasting a sensitivity of 96.01% and a
specificity of 93.32%. Lastly, superior performance was
exhibited by the FPA-DNN framework, attaining the highest
sensitivity of 98.82% and specificity 0f 98.67%.

In Fig. 8, the analysis of our suggested technology with
existing techniques in terms of F-score as well as kappa is
depicted. It shows that inadequate diagnostics, a minimum F-
score and kappa is demonstrated by the LR approach.
Moderate values were exhibited by the XGBoost and
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OlexGA technique. In alignment with this, a considerable
outcome was generated by the PSO model. Subsequently, a
superior outcome was achieved by the ACO scheme.
Furthermore, satisfactory results were demonstrated by the
DT framework. Following this, slightly enhanced results
were exhibited by the MLP scheme. Furthermore, slightly
superior results were obtained by the D-ACO method.
Competitive results were showcased by the FNC model.
Finally, all other methods were surpassed by the FPA-DNN
model, achieving the maximum F-score of 99.01% and a
kappaof97.32%.

Evaluation of accuracy for suggested methodology
compared to existing methods are presented in Fig.9. Figure
demonstrates that the achieving the lowest accuracy of
75.05%, Olex-GA technique performs poorly in
diagnostics, but better accuracies are gained by LR and
XGBoost techniques. Following this, moderate accuracy
values was achieved by PSO and ACO techniques.
Furthermore, near-optimal performance accuracy was
obtained by the D-ACO and FNC approaches. Ultimately,
the FPA with DNN technique achieves 98.74% which is an

exceptional excellent accuracy.

100
80 | '[ 1
60 \ ‘}
40
20
0

F-score

Kappa

Eee—————

olex-GA
LR o=

XGboost |7
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DT

MLP

FNC
D-ACO

FPA-DNN

Fig. 8 Evaluation based on F-score and kappa
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Fig. 9 Evaluation based on Accuracy
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V. CONCLUSION

The research article introduces an innovative CKD
diagnosis model, known as the FPA-DNN model, which is
IoT and cloud-based in design. This model involves several
key stages, including data collection, pre-processing, FS, and
classification. Initially, patient health information is
collected using IoT devices. The FPA with DNN model
leverages the algorithm of OCS to perform FS, identifying a
prime selection of features from the pre-processed input. By
applying the FPA algorithm, further fine-tunes the DNN
parameters, resulting in improved grouping accuracy.
Experimental evaluation of the FPA with DNN technique
was done on a benchmark of input dataset, confirmed its
superiority. It achieved the highest sensitivity at 98.82%,
specificity at 98.67%, accuracy at 98.74%, F-score at
99.01%, and kappa at 97.32%. Looking ahead, the
performance of the FPA-DNN model can be further
enhanced through the implementation of clustering and

outlier removal techniques.
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