Karpagam JCS Vol. 2 Issue 4 May. - June. 2008

Novel Method for Embedded RISC Architecture
to Reduce Memory Access Energy

T.Gnanasekaran!, K.Duraiswamy?, M. M. Arunprasath’

ABSTRACT

In embedded system, reducing program size is an
important goal, because storing large size codes in a
smaller memory is a problem. More than one application
in one embedded systern has large size codes. In order to
program the device efficiently, the memory size must be
large enough to accommodate the large size codes. For
example, PIC16F84 microcontroller has lower memory
than PICi6F877 microcontroller. So the PIC16F84 must
be replaced with new PIC16F877, in order to get multiple
applications. But replacing the existing device with new
device or component is not so easy. In this proposed
system, the existing system problems must be overcome
to improve the efficiency. A way to achieve this is to
restrict the size of the instructions. Shorter the instructions
are obtained mainly by restricting the number of bits that
encode registers. This is achieved by means of
compressing the repeated instructions. While executing
the codes the instructions are decompressed. This method
increases the efficiency of the system and also reduces

the energy.

Keywords : Instruction Compression, Instruction

Decompression Table, RISC Processor.

1 Assistant Professor, Department of ECE, BannariAmman
Institute of Technology, Sathyamangalam.

Dean/Academic, K.S.Rangasamy College o

Technology, Tiruchengode :

L ecturer, Aurora's Engineering College, Hyderabad
e-mail : t.gnanasekaran(@gmail.com.

639

1. INTRODUCTION

Here a new technique is introduced for reducing the
energy spent by the memory-processor interface of an
embedded system during the execution of firmware code.
The method is based on the idea of compressing the most
commonly executed instructions i.., the instructions used
by the embedded code with the highest execution
probability so as to reduce the energy dissipated during
memory access. This solution allows us to fix a priori the

bit width of the compressed instructions. The two-fold |
advantage obtained from this choice is that the size of
the instruction decompression table is fixed and limited,
and the instruction fetching/decompression logic has
reduced complexity. Here is an architecture for instruction
decompression is introduced. In this architecture, the
memory bandwidth and energyrrequired to fetch the

program from memory is reduced.

Here a new technique is introduced for reducing the
energy spent by the memory-processor interface of an
embedded system during the execution of firmware code.
The method is based on the idea of compressing the most
commeonly executed instructions so as to reduce the
energy dissipated during memory access. A major
contributor to the system power budget is the memory-
processor interface [5]. For this reason, several techniques
focusing on memory-processor interface power
optimization have been proposed.. They can be classified -
into two broad classes: bus encoding techniques.{3] and

memory organization techniques.

Karpagam JCS Vol. 2 Issue 4 May. - June. 2008

These encoding schemes reduce interface power by
changing the format of the information transmitted on
the processor-memory bus. Memory organization
methods change the way inforraation is stored in memory
and the address streams generated by the processor have
relatively low transition activity. If the number of
instructions used by the embedded code becomes large,
it increases the number of bits of the compressed
instructions. It is a major limitation. To overcome this
limitation, increase the size of ‘the instruction
decompression table, this may excessively complicate the
implementation of the controller that handles instruction
fetching and decoding. Especially when bit-width of the
compressed instructions is not compatible with the
available memory addressing scheme. A solution is to
compress only the instructions used by the embedded
code with the highest execution probability. This solution
allows us to fix a priori the bit width of the compressed
instructions. The two fold advantage are size of the
instruction decompression table is fixed and limited and
the instruction fetching/decompression logic complexity
has reduced. In this new architecture the memory
bandwidth and energy required to fetch the program from

memory is reduced.
2. ORIGINAL ARCHITECHURE

The existing system, the processor—mcmory architecture
is shown in the figure 1. Here all the instructions are
being fetched from memory. Executed with dynamic bit
length k-bit size with bus architecture.

The instruction bits are being fetched by core program
of the system according with instruction. The instruction
code will be fetched from corresponding memory address.
The instruction will be passed through desired bus

architecture.

640

Memaory

Addresses

k bile

instructions

Figure 1 : Original Architechure
3. MODIFIED ARCHITECTURE

Another method which is shown in the figure 2, the system
will be feed through compression system. The repeated
instruction are passed through log, N. All the instructions
are decompressed inverse of log, N, The decompression
process is- executed with referring Instruction
Decompression Table (IDT) values. The width of
uncompressed data is more than log, N. The modified

architecture [6] has the fallowing draw backs.

1. The IDT may become very large so the area required

is also more to store it.

2. The bit width of the compressed instructions is
comparable to bit width of original instructions, thus

making negligible reduction in memory bandwidth.

3. Two bytes are used to store compressed Values of

log, N. It is not efficient.

Novel Method for Embedded RISC Architeciure to Reduce Memory Access Energy

Memary

i |

s

instructions

Figure 2 : Modified Architecture

4. Treg Basep COMPRESSION

Another method [2] proposes a Tree Based Compression
{TBC). Instructions are forming an expression free. The
Huffman encoding is such an algorithm, but designing

fast Huffman decoders is complicated.

3. Prorosep SYsTEM: INSTRUCTION BASED

COMPRESSION(1BC)

In order to simplify the decompression a compression
algorithm called "Instruction Based Compression” is

suggested, which is based on fixed-length code words.

Memory

nstrgctions

Instruction
Filter

Figure 3 : Proposed Architecture

641

In a embedded program most of the instruction are
repetitive. Taking this advantage instruction compression
is proposed. i.e. Compress the instructions that are
executed more often, less probable instructions are left
unchanged and stored as it in the memory. This option
guarantees a fixed and limited size of Instruction
Dictionary Table (IDT) for all most used 256 instructions.
This requires previous knowledge of a controller to handle
the instruction. Because the program stored in memory
is, a mix of more compressed and few uncompressed
imstruction set. The new proposed system for compression

is based upon insituction.

Instruction based compression is motivated by the
large percentage of expression trees that are composed
of single instructions, the most frequent being single
instruction treés {1]. Rare trees are also fairly small, while
medium frequency trees are larger. So, all instruction in
a program is replica of only 18.3% of its instructions,
and a similar exponential behavior was again observed
for single instructions. The resulting final compression
ratio is on average 31.5%, and again it is achieved using
only four classes. The reason for best compression is that
although two entries in the TBC dictionary stores distinct
trees, the trees can have similar instructions. On the other

hand, entries in the TBC dictionary are unique instructions.

6. ALGORITHM

1. The algorithm divides the set of distinct trees info nc

classes, each class having nk trees.

The number of classes (nc) is determined exhaustively
by exploring all possible partitions from two to eight
classes. Almost all programs, the minimum
compression ratio is achieved when the partition is

performed using four classes.

Karpagam JCS Vol. 2 Issue 4 May. - June. 2008

3. Eachpartition of a given number of classes, determine
all possible combinations of class sizes and measure

their compression ratio.

4. Smallest compression ratio is then selected as the best

partition for that program.

5. Fized-length code words of size [log, nk] are then

assigned to trees of class k.

6. For each codeword append a prefix of size [log, nc],

that is used by the decoder to identify the class.

7. So the compression algorithm substitutes each
expression tree in the program by its corresponding

prefix and codeword.

The Firmware running on a given embedded processor
normally uses a small subset of the instructions supported
by the processor. By replacing such instructions with
binary patterns of limited width. Memory bandwidth can
be reduced, thus decreasing the total energy. Binary
patterns are like [log,N], where N is the number of distinct
instructions appearing in the code. Here those two k-bit
instructions are said to be distinct if they differ by at least

one-bit.

This solution does not require adhoc compilers. The
original instructions can be automatically replaced by
{log,N]-bit instructions by means of a script after the
subset of instructions actually used by the program is
identified through instruction level simulation, and the
number of [log N] is determined. The original machine
code can thus be compressed to reduce the memory
bandwidth that is needed to execute the program. The
so-called instruction decompression table and the related
conirol circuitry can be designed and placed between the
processor aid memory. Hence, the architecture of the core

processor is left unchanged.

Example:

Tnitialize

clrf porta

clrf porth

bef status,6

bsf status,5
movlw b'11011011°
*movw{ porta
movlw b'0000000¢
*movwi portb
movlw b'00000111
*movw{ adconl
movlw b'10000100'
*movwf adconl
bef status,S
retlw 00

3

setdata

andlw OFh
*movwi templ
bifss temp1,0
bef porth,0
bifsc temp1,0
bsf porth,0
btfss temp1,1
bef portb, 1
bifsc templ,1
bsf portb,1
btfss temp1,2
bef porth,2
btfsc templ,2
bsf porth,2
btfss temp1,3
bef portb,3
btfsc temp1,3
bsf portb,3
retlw 00

Novel Method for Embedded RISC Architecture fo Reduce Memory Access Energy

*movw{ temp
swapf temp,w
call setdata
LCDEN
LCDDIS
movf temp,w
call setdata
LCDEN
LCDDIS
movlw 02
call msecond

rettw 0

Instructions with prefix '*' indicates the same instruction
which are repeated more than once in a program, These
mstructions are to be compressed by using the above-

mentioned algorithm.

7. PPECOMPRESSION

Memary Decompressor Processer
fremSian_ L e L
bt
ImemWsl
ImemAcabus instidus
airbies
ImemiCompbus

Figure 4. Decompressor Interface

The block diagram of the de-compressor interface with
processor and instruction memory is shown in Figure 4.

The core communicates with the de-compressor using

the static instruction memory interface based on a four-

phase process.

643

101

<i8

Figure 5, De-Compressor Block Diagram

The de-compressor block diagram is shown in Fig.5. The
IDT contains 255 32-bit words. The address each word
is the compressed code of the instruction stored in the

word.

Decompression is performed by reading the instruction
the content of IDT at the specified address by the byte of
compressed instruction. The compressed instruction
buffer having 32-bit register that can be accessed byte-
by-byte from the memory. The results coming from
memory are stored in the CIB and are decompressed one
byte at a time. Final stage the contro] logic block gets the
instruction interface signal, IDT lookup and CIB read/
write images that direct transfer from memory to

processor of compressed instruction.

The key function of legic control block is address
generation in refer with the IDT values. If the processor
reads the address in sequence the controller generates
new memory address every four processor fetch cycles.
The remaining three cycles, compressed instructions are
executed from CIB. On the contrary if either the processor
is the destination address of a branch/jump or a mark is
read a cycle to instruction memory is initiated. The IDT
is an asynchronous SRAM read with macro generator

provided within the STM CAD Design kit. A small

Karpagam JCS Vol. 2 Issue 4 May. - June. 2008

amount of togic has been added between the processor
and de-compressor to the MIPS/ DLX interface signals

into the standard described above.

The de-compressor 1s a single clock edge triggered design
while the processor uses a two-phase non-overlapping
clock. The area and energy consumption of the de-
compressor as well as the critical path delay are dominated
by the IDT. IDT is 2 1-Kbyte SRAM. When the de-
compressor is processing compressed instructions, it
performs one memory bus cycle every four fetch cycles.
When it does not involve CIB refill fetch time for
compressed nstructions reduces to IDT read time. This
is the most comunon case. In the remaining cases fetch
latency is longer. Memory access time plus IDT read time
is the time required for fetching a compressed instruction
immediately after a CIB refill. The worst fetch time is
experienced when the first instruction after a CIB refill
is not compressed here two instruction memories reads

to fetch an instruction.

Results:
Data Validity:
S.No. | Input Compressed Compressed
Fije File Size Ratio in %
size in in KB
KB
1. 136 57 41
2. 104 33 36
3. 81 36 44
4, 33 7 21
E. 24 [25
6. 19 8 42

8. CoNcLUSION

By using the selective instruction compression technique,
the memory access is reduced and the energy spent during
the memory access is also reduced. Therefore, the
efficiency will be improved. The compression technique

can be adopted for data also. However, data compression

644

is not as efficient as instruction compression because the
total number of repeated data is less than the total number

of repeated instructions. So the compression technigue.

REFERENCES

[1] C.I.Su, C.Y.Tsui. and A.M.Despain, “Saving power
in the control path of embedded processors”, IEEE
Design Test Compute., Vol.11, No.4, PP 24-30, 1994

{2] L.Benini, A.Macii, E.Macii, M.Poncino and
R.Scarsi, “Architectures and synthesis algorithms
Jor power efficient bus interfaces”, 1EEE
Trans.Computer-Aided Design, Vol. 19, PP.969-980,
Sep 1999

[3] Y.Yoshida, B.Y.Song, H.Okuhata, T.Onoye and
1.Shirakawa, “A Project code compression approach
fo embedded processors”, in ACM Int.Symp.Low
Power Electronics and Design, Monterey, PP.265-
268, 1997

(4] T.C.Bell, J.G.Cleary and [.H. Witten, “Tex!
Compression,ser.Advanced Reference Series. ™
Englewood Cliffs, NJ:Preatice-Hall, 1990

[51 G. Araujo, P.Centoducatte, R.Azevedo and R.
Pannain, “Expression tree based algorithns for code
compression on embedded RISC architectures”,
Institute of Computing, Univ. of Campinas. http://
www.dce.unicamp.br/ic-main/publications-e.html,
Jan 2000

[6] David A. Huffman, "4 Method for the Consiruction
of Minimum-Redundancy Codes”, Proceedings of
the LR.E., Vol.4D), PR.1098-1101.

{71 Kozuch.M and Wolfe.A, “Compression of
embedded system programs”, in Proceedings of
IEEE International Conference Computer Design,
Cambridge, PP.270-277, Oct 1994,

[8] Lekatsas.H and Wolf.W, “Code Compression for
Embedded Systems ”, Proceedings of Annual ACM/
IEEE Design Automation Conference, PP. 516-521.
June 1998,

Novel Method for Embedded RISC Archifecture o Reduce Memory Access Energy

[9] Wolfe. A and Chanin. A, “Executing Compressed Dr. K. Duraiswamy is working as Dean

FPrograms on an Embedded RISC Architecture”, / Academic, K.S.Rangasamy College
_proceedings Of 25th Ann. Intemnational Symposium

on Microarchitecture, PP.81-91, Dec 1992.

of Technology, Tiruchengode-637 209,

Tamilnadu, India. His areas of interests
[10] http://www. Woundedmoon.org,
are Computer communication and Networking.

Author’s Biography

T.Granasekaran graduated from
University of Madras in 1989 and
completed his post graduate from

Anna University, India. He is presently

with BannariAmman Institute of
Technology, Sathyamangalam, Tamilnadu, India, as
Assistant Professor and working towards his Ph.D, in the
area of Error Control Coding. His other interests include

signal design for WiMax and modulation technique.

645.

Karpagam JCS Vol. 2 Issue 4 May. - June. 2008

A Novel Technique for Web Page Informative Content Extraction

M.Karthikeyan', Krishnan Nallaperumal?, K.Senthamarai Kannan®, T.Rajesh’

ARBSTRACT

The web has established itself as the dominant medium
for deing efectronic cormmerce, Consequently the
number of service providers, large and small, advertising
their services on the web continues to proliferate. In this
paper, new exfraction algorithms for mining information
from web pages are proposed. Search engines crawl the
World Wide Web to collect web pages. These pages are
either readily accessible without any activated account or
they are restricted by username and password. Whatever
be the way the crawlers access these péges, they are {in
almost all cases) cached locally and indexed by the
search engines. An end-user who performs a search using
a search engine is interested in the primary informative
content of these web pages. Non-content blocks are very
common in dynamically generated web pages. Typically,
such blocks contain advertisements, image-maps, plug-
ins, logos, counters, search boxes, category information,
navigational links, related links, footers, headers and
copyright information. These non content sections must
be removed from the pages to get the content blocks so
that mining of knowledge can be done. The proposed

algorithm outperforms to extract the content and also the

‘Research Scholar, Centre for Information Technology
& Engineering, Manonmaniam Sundaranar University,
Tirunelveli - 627 012,

*Professor and Head, Centre for Information Technolo gy
and Engineering, Manonmaniam Sundaranar University,
Tirunelveli - 627 012.

*Professor, Department of Statistics, Manonmaniam
Sundaranar University, Tirunelveli-627 012.

Lecturer, Shirdi Sai Engineering College, Bangalore, India.

646

space needed for storage requirements is also minimized
by similarity measurements. This paper deals with the
problem of identifying and extracting the informative

contents of a web page

1. INTRODUCTION

Extraction algorithms for mining information from web
pages are described in this paper. Also a propagation
technique for identifying and accumulating all of the
attributes related to a service entity in a web page is

proposed.

A substantial part of the web pages, especially those that
are created dynamically contains information that should
not be classified as the primary informative content of
the web page. These blocks are seldom sought by the
users of the website. Such blocks are referred as non-

content blocks [1].

Before the content of 2 web page can be used, the non-
content blocks.must be removed based on the tags and
some special features {2], so that an end user can get the
required contents easily. We have designed two
algorithms, based on the general need of the web users,
one to extract the required text features and the other to
extract the image features from the web pages. To extract
the textual confent, our algorithm crawls the web pages
and removes the non-content information. Once the non-
content sections are removed, the remaining can be
considered as the content sections [10]. Several
algorithms are there to find the primary informative
contents from the web pages. Most of them are based on

the DOM (Document Object Model) tree of the web

A Novel Technique for Web Page Informative Content Extraction

pages. However, because of the flexibility of HTML
syntax, a lot of web pages do not obey the W3C (World
Wide Web Consortium) HTML specifications, which
might cause mistakes in DOM tree structure [7].
Moreover, DOM tree is imitially introduced for
presentation in the browser rather than description of the
semantic structure of the web pages. For example, even
though two nodes in the DOM tree have the same parent,
it might not be the case that the two nodes are more
semantically related to each other, than to other nodes
[7). HTML pages are developed by means of the HTML
tags as per the W3C. Our algorithm crawls in to the web
pages based on the tags and some key features and
removes the non-content sections. Certain non-content
sections may have their own specific tags or else they are
removed by identifying their specific features [2], which

made it easier to temove the non-content sections.

The input to the proposed algorithm Is a web page and
this algorithm crawls the web page based on the tags and
the predefined set of specific functions to remove the
unnecessary sections. Once the non-content sections are
removed the remaining is considered as the content
. sections. Before the extracted contents from a web page
can be used, it must be subdivided into smaller
semantically homogeneous sections based on their
contents [1]. Such sections are called blocks. A block 'B'
is a portion of a web page enclosed within an open-tag
and its matching close-tag, where the open and close tags
belong to an ordered tag-set “T' that includes tags, such
as <FTR>, <P>, <HR> and [1]. Text paris alone are
extracted from each blocks, bésed on certain features [1].
Also the system is designed to checks the similarity of
each blocks using Competitive Neural Network (CNN)
pattern recognition mechanism. The first block is taken

as the inpuf and it will be compared with all the other

647

blocks in the page. We used a threshold () with a
nemerical value of 0.75 in our implementation. If the
similarity between the two blocks is greater than the
threshold then the blocks are considered as similar and
only one block is stored. This minimizes the storage
requirements. The threshold can be varied based on the
requirements. Several familiar web pages were cxamined
and our algorithm produces best resuit comparable to

other similar algorithms.

An algorithm to retrieve the images from the web pages
is also provided. If the user is interested to view only the
image or may be, the page is a specialized image based
web page, then the user can get best results with our
algorithm. As per the W3C guidelines the images are in
the tag . The proposed algorithm crawls the web
page to retrieve the particular tags and a path is made to
folder where the images are stored. Only the images that
are informative alone is displayed, which is identified by
the use of pair of tags into which the images are

embedded.

2. IpENTIFICATION OF NoN CONTENT INFORMATION

As per the guidelines of the W3C, almost in all the web
pages, either all or most of the non-content information
mentioned earlier are available. The way the designers
develop a web page, it may have one or more
presentation styles used in it, which feads to the addition
of non-content blocks. As well, the contents inside these
non-content blocks may have a similarity. The propesed
algorithm identifies these presentation styles and or the
common contents by the use of a set of inputs provided
to the algorithm. The inputs may be some ordered tags or
some common features. The algorithm is designed so
that the input set can be altered at any time depending on
the applicﬁtion. For example the anchor tag <A> is

mainly used for the link. The default behavior associated

Karpagam JCS Vol. 2 [ssue 4 May. - June. 2008

with a link is to redirect the user to another web
resource. Hence this information can be removed by the
use of the tag set as an input to remove the non content
sections. Like this our algorithm functions and removes
all the non-content information and separate the content

part as detailed below.

Input : HTML pages H1, H2,...Hn (H), sorted tag
and Features (T).

Qutput : Content Blocks and their associated Page.

e B o B

Begin
I. For ecach HTML page
read Hi
For each input tag and feature Do
Read input tag and feature
Ef non-content blocks present Then remove all
End for
Remove fags
Store the output blocks B1, B2,Bn
For each block
10, Read Bx
11. Read B1, B2,.....Bn excluding Bx
12. Sim(Bx : By)
13, If simitarity (Bx : By} > A
14, Return Bx
15, Read nextB
16. End for
7. Read next input tag and feature
I8, End for
19, Read next (H)
20. End

648

Function sim :
Input : Blockl, Block2

Qutput : Similarity measure

Begin

S1 €— String (Blockl)

S2 €~ String (Block?)

Return Sim(B1 : B2) {percentage)
End

3. BrLock FEATURES

As mentioned in the previous section, in a HTML web
page, let block B1 and block B2 are the portions of the
web page, enclosed with an oper and its matching close
tag. The algorithm is designed in such a way to perform
the search operation based on Breadth First Search (
BFS) method [11,[9]. The input set of tags as per the
W3C guidelines is given. This algorithm takes an input
tag from the set of tags and performs the search. Ifa
matching tag set is found, that block is separated or else,
the total contents will be the output. Once a block is
found, once again BFS is performed in to the separated
block to find existence of any matching block is present
inside it. If any matching block is found it is also

separated.

For example a table can be created using the HTML tag
<TABLE> and inside this table, table rows are created
using the <TR> tag and the table data are created using
the tag <TD>. By the use of the BFS, each and every
block is searched for all the input set of tags and the
result of the search brings the atomic blocks. Several
features are added with their standard tags but not all.
Atomic blocks may have features like text, images,
applets, java scripts etc. The input tag set includes text,
text tag, list, table, object, frame, form and script [8]. If
any of the other features are important, our frame work

can be modified by adding the new features.

A Novel Technique for Web Page Informative Content Exiraction

4, InexTiFICATION OF SiMILAR BLOCKS

The separated blocks of each web page is
stored as tree int a buffer. All the blocks are checked for
the similarity between them. The Competitive Neural
Tree [3], [4], [5], has a structured architecture, used to
identify similar content blocks. A hierarchy of identical
nodes forms an m-ary tree as shown in Fig.1(a) and
Fig.1{b) shows a node in detail. Each node contains m
slots st, s2, .. ., sm and a counter age that is
incremented each time an example is presented to that
node. The behavior of the node changes as the counter
age tncreases. Each slot si stores a prototype pi, a
counter count, and a pointer to a node. The prototypes pi
€ P have the same length as the input vectors x. They are

trained to match the patterns obtained from each node.

The slot counter count is incremented each time the
prototype of that slot is updated to match an example.
Finally, the pointer contained in each slot may point to a

child-node assigned to that slot.

A NULL pointer indicates that no node was created as a
child so far. In this case, the siot is called terminal slot or

leaf. Internal slots are slots with an assigned child-node.

Figure 1 (a) Tree Structure

Figure 1 (b} Explanation of individual node

649

A. Learning at the Node-Level

In the learning phase [3] the tree grows starting from a
single node, the root. The prototypes of each node form
a minuscule competitive network. All profoiypes ina
node compete to atiract the examples arriving at this
node. These networks are trained by competitive
leaning. When an ¢xample x € y arrives at a node, all of
its prototypes p,,p,,..,b,, compete to match it. The closest
prototype to x is the winner. If d(x, pj) denotes the
distance between x and p; the prototype p, is the winner
ifd(x, p) <d{x P) ¥ # k. The distance measure used in
this paper is the squared Euclidean norm, defined

as deP)=lr—p,|° (1)

The competitive leaming scheme used at the node level
resembles an unsupervised learning algorithm proposed
to generate crisp c- partitions of a set of uniabeled data
vectors [5],[6]. According to this scheme, the winner p,
is the only prototype that is attracted by the
input x arriving at the node. More specifically, the

winner p, is updated according to the

ald

equation B’ = s

+afx - P

(2)

where o is the learning rate. The learning rate «
decreases exponentiatly with the age of 2 node according

to the

equation @ = &, exp(—a age) 3)

where o is the initial value of the learning rate and o
determines how fast o decreases. The update equation
(2) will move the winner P, closer to the example x and
therefore decrease the distance between the two. After a
sequence of example presentations and updates, the
prototypes will respond each to examples from a
particular region of the input space. Each prototype P,

attracts a cluster of examples R,

Karpogam JCS Vol. 2 issue 4 May. - June, 2008

The prototypes split the region of the input space that the
node sees into sub regions. The examples that are located
in 2 sub region constitute the input for a node on the next
level of the tree that may be created after the node is
mature. A new node will be created only if a splitting

criterion is frue.

B. Life Cycle of Nodes

Each node goes through a life cycle. The node is created
and ages with the exposure to examples. When a node is
mature, new nodes can be assigned as children to it. A
child-node is created by copying properties of the slot
that is split to the slots of the new node. More
specifically, the child will inherit the prototype of the
parent slot. Right after the creation of 2 node, all its slots
are identical. As soon as a child is assigned to a node,
that node is frozen. Its prototypes are no longer updated
in order to keep the partition of the input space for the
child-nodes constant. A node may be destroyed after all

of its children have been destroyed.

C. Training Procedure

The generic training procedure is described below:
Do while stopping criterion is FALSE:

o Select 2 block.

e Traverse the tree starting from the root to find a
terminal prototype P, that is close to x. Letn, and s,
be the node and the slot that P, belongs to,
respectively.

e If the node n, is not frozen, then update the
prototype P, according to equation (2).

o If a splitting criterion for slot §, is TRUE, then
assign a new node as child to S, and freeze node n,.

e Increment the counter count in slot 8, and the

counier age in node 1y

Depending on the type of the search method, the second
step is implemented and various learning algorithms can
be developed. The search methed is the only operation in
the learning algorithm that depends on the size of the
tree. Hence, the computational complexity of the search

method determines the speed of the learning process.
Sample pseuda code used for training the network

/* Assigning inputs to each neurqn*/
e Set the initial vatue i=0

e For all newron In Input

o Neurcn.Output = Inputs(i)

s i=i+1

e End

/*Calculating the weight of each neuren®/
o Forall iﬁput neuron connected to This Neuron

e netValue = netValue + (Weight Associated With
InputNeuron * Output of InputNeuron)

e End

/*Calculating the error value %
e Delta = Neuron.Output * (1 -'Neuroh.O:htput);_f“
ErrorFactor '
/Caleulating the eutput */
e For each layer in Input layers
e neuron.Update(Input* Weight)

¢ End

/*Calculating the Bias Value */
s SetnetValue As Single = bias
s For all input neuron connected to ThisNeuron

o netValue = nectValue + (Weight Associated With
InputNeuron * Output of InputNeuron)
e End

. A Novel Technique for Web Page Informative Content Extraction

A human expert is able to provide a better threshold
value to get the similarity. Based on various expcﬁmcnts
performed on ditferent web sites. a threshold value ol
2 =1{0.75 is decided. which produces good results.
Depending on the application this threshold can be
varied 10 produce a better output [10]. The first black
from the butfer is taken and it is compared with ali the
other blocks in the bufter. If the similarity value between
the blocks is greater than the threshold then. the (wo
blocks are considered to have similar contents and only
one block is stored. This minimizes the space
requiremertt Tor the storage purposes. Then the next
block is taken and the samwe procedure of comparison 1§
repeated until all the blocks are compared with all uther
blocks. Hence the output will not have any redundant

blocks and non content blocks.

5. ResovaL OF BMAGES

The system is designed to retrieve images from the web
pages. The Feature Extractor algorithm is able to identify
only the text contents. The proposed algorithm is
designed so that it can also able to identify the image
featares and display it on the basis of the users' interest.
initially the images are identified by the use of the
 tag, which is a standard tag for the images in
HTML pages as per W3C guidelines. After the image
tags are identified a path to the image where it is stored
is made and the images are retrieved. In the present work
the images with the extension .jpg is alone retrieved as
most of the web page designers use the JPEG standard
images for the informative part. Images in other format
may be used for the advertisement parts. It is also
pos;sible to alter the algerithm if any other format images
are necessary. Also based on the size (count} of the
image pixels the image can be decided as informative or
non-informative. This algorithm will find a good
application where the users are interested only on the

images.

651

input : HTML pages H. tag
Qutput : Images

Begin

1. For all HTML pages

2. Read H

3 A present Do

4. Extract the Block and store as |
3. For all image blocks |

0. Read |

7. If extension (JPEG)Y Do

8. Link Image source

9. Display the Image

10. Else read Next (1)

1. Else read Next (H)

12 End for

13. End for

End

6. ExperiMENTAL EvALUATION

In this section, we present an empirical evaluation of our

method. We also compare with two other related works.

A. b-Precision

Precision is defined as the ratio of the number of relevant
items (actual primary content blocks) r found and the
total number of items t (content blocks suggested by an
algorithm) found. As the precision is calculated for

blocks it is called as b-Precision. b-Precision =r/t

B. b-recali

Recall has been defined as the ratio of the number of
relevant items found and the desired number of relevant
items. The desired number of relevant items includes the

number of relevant items found and the missed relevant

