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FEDERATED LEARNING BASED DYNAMIC QUALITY ROUTING IN
WIRELESS SENSOR NETWORK
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ABSTRACT

Wireless Sensor Networks (WSNs) are vulnerable to
malicious nodes, limiting their applications. This work
proposes a node classification approach for network security
in wireless sensor networks using federated deep learning.
The method leverages network deployment information and
anomaly detection techniques to initially classify potential
malicious nodes. Feature extraction from network data,
encompassing activity, communication, traffic patterns, and
resource consumption, provides a comprehensive
understanding of node behavior. This detailed view,
combined with federated learning, allows for collaborative
model training across sensor nodes while preserving data
privacy. The trained model identifies the patterns in the
extracted features to classify legitimate and malicious nodes,
continuously updating its knowledge with new data.
Compared to traditional deep learning approaches, this
method demonstrates superior performance in malicious
node detection through a combination of federated learning
and LEACH protocols. Network performance metrics like
throughput, energy consumption, and delay are evaluated
before and after implementing the proposed system. The
trained model effectively identifies malicious nodes in
unseen data, enabling the registration of legitimate nodes for
further network operations.
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I. INTRODUCTION

Wireless Sensor Network is a network comprising
sensors distributed in various locations, collaborating to
monitor and gather data on physical or environmental
conditions. These sensors can measure parameters such as
temperature, sound, pollution levels, humidity, and wind.
Subsequently, the collected data is transmitted to a central
location for analysis. WSNs are used in a variety of settings to
collect data, but because of their open nature and resource
limitations they become vulnerable to security risks. Some
essential aspects of WSN Security includes threat under
standing, security objectives, security mechanisms and
balancing security and resource constraints. Wireless sensor
network faces some threat understanding issues such as
Denial-of-Service (DoS), data tampering, eavesdropping,
and node capture. To handle these threats, WSN security
focuses on four main objectives: integrity, confidentiality,
availability and authentication. Access control,
cryptography, key management, intrusion detection systems,
and secure routing protocols are vital security mechanisms
used in WSNss as layered security approach. Because of their
limited processing power and battery life, traditional
cryptographic algorithms used in wired networks may not be
appropriate. Therefore, light weight cryptographic
techniques are considered. These mechanisms are designed
carefully to maintain strong security without hindering how
sensor networks operate. Securing WSNs requires a layered
approach that addresses various threats and vulnerabilities.
By understanding the security goals and implementing
appropriate mechanisms, WSNs can be made more resilient
to attacks.

WSN relies on special instructions called routing
protocol that navigates data packets from their source sensor
node to a destination sensor node. These protocols are
essential for efficient and reliable communication among
sensor nodes while optimizing network resources such as
band width, energy, and latency. Routing protocols in WSNs

are designed to address the unique characteristics and
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challenges of these networks, such as limited energy supply,
dynamic network topology, and communication constraints.
WSN routing protocols can be broadly classified into three
categories based on their approach to routing:

Flat Routing Protocols: All sensor nodes in the network
operate equally, making routing decisions based on metrics
such as distance, energy level, orhop count.

Hierarchical Routing Protocols: Sensor nodes are divided
into clusters or hierarchies, with designated cluster heads
who are responsible for coordination and communication
within the cluster.

Location-Based Routing Protocols: These routing protocols
use the geographical location of sensor nodes to make
routing decisions which are particularly useful where the
physical location of nodes is important and known.

The ideal choice depends on several factors like network
size, density, mobility, and application requirements. The
ultimate goal is to optimize network performance interms of
energy efficiency, latency, and reliability while ensuring that
datareaches its destination in a timely and efficient manner.

WSNs can vary greatly, ranging from a few hundred in
small-scale installations to tens of thousands in large-scale
networks. Small-scale WSNs are commonly used in
controlled environments like building monitoring or home
automation systems which are fairly easy to manage due to
their size. Medium-scale WSNs, consisting of several
hundred to a few thousand nodes, are used in applications
like environmental monitoring and industrial automation,
requiring more sophisticated routing protocols and
management techniques. Applications like smart cities,
disaster response, and animal tracking use large-scale WSNss,
which have tens of thousands of nodes spreads over a large
area. These networks pose significant challenges in terms of
scalability, energy efficiency, and network management.

Scalability in WSNs refers to the network's capacity to
accommodate an increasing number of nodes while
maintaining performance and efficiency which depends on
various factors. Routing protocols are essential, in large-
scale WSNs, location-based and hierarchical routing
protocols are often used to improve scalability. For energy

efficiency, protocols and algorithms are used to reduce
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energy consumption and prolong network lifetime.
Performance optimization, resource management, and node
health monitoring depends on efficient network
administration. Large-scale WSNs face a unique challenge:
balancing network performance with control message over
head. Efficient and flexible physical node placement is
ensured by using scalable deployment techniques such as
mobile node deployment, grid deployment, and random
deployment. To ensure efficient and reliable operation in
various applications and environments, these aspects must be
carefully taken in to account while building and
implementing a scalable WSN.

Detecting malicious nodes in WSNs is vital for ensuring
network security. This involves analyzing node behavior,
detecting anomalies in energy consumption and data
patterns, and employing various techniques like Intrusion
Detection Systems (IDS), node energy consumption pattern
and trust-based mechanisms. Collaborative detection, where
nodes share information and machine learning algorithms
trained on past data further enhance threat detection. By
combining these techniques, WSNs can effectively detect
and neutralize threats, ensuring the network's integrity and
smooth operation.

Machine learning (ML) techniques are increasingly
applied in WSNss to strengthen security measures, addressing
key challenges like intrusion detection, secure routing, and
data confidentiality. These approaches reform WSN security,
offering innovative solutions to safe guard networks against
threats. The development of Intrusion Detection Systems for
WSNs relies heavily on ML techniques such as Support
Vector Machines (SVM), Random Forest, and Neural
Networks. These systems analyze network traffic and sensor
data, identifying abnormal patterns of malicious activities.
Moreover, ML techniques enhances routing protocol
security by detecting and mitigating attacks, ensuring the
integrity of routing messages and node behavior. They play a
vital role in key management, predicting key distribution
patterns and detecting unauthorized key access which
fortifies communication security between sensor nodes. ML
techniques ensure data confidentiality by employing

encryptional gorithms, rendering sensor data unreadable to
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unauthorized entities. Further more, ML helps anomaly
detection in sensor data, flagging deviations that may signal
security breaches or sensor malfunctions. By analyzing past
data, ML model scanidentify patterns of normal behavior,
enhancing security measures. ML also contributes to
energy-efficient security solutions in WSNs, optimizing
security mechanisms to minimize energy consumption

without compromising security levels.

II. LITERATURE REVIEW

A novel approach for enhancing Wireless Sensor
Networks (WSNs). It leverages Bi-Concentric Hexagons
and Mobile Sink technology to optimize cluster head
selection, energy efficiency, and data aggregation.
Additionally, Sec DL ensures high-level security through
the One Time-PRESENT (OT-PRESENT) cryptography
algorithm and enhances Quality of Service (QoS) using the
Crossover based Fitted Deep Neural Network (Co-FitDNN)
model. It enhances loT - user security through data mining-
based authentication, improving network performance as
shown by ns-3.26 modeling [1]. The Secure Wireless Sensor
Network Middleware (SWSNM), which addresses WSN
security challenges using the generative adversarial
network algorithm. SWSNM generates fake data and
distinguishes it from real data, enhancing data accuracy and
security. It improves energy efficiency, through put, and
reduces end-to-end delay, promising significant
enhancements in WSN performance and security [2]. A
deployed model to isolate the DoS attacker nodes,
leveraging quality metrics to optimize routing, rerouting,
and data transmission, resulting insignificant improvements
in network performance. Data collected by sensor nodes
undergo analysis and processing in distributed systems
before encryption and transmission to the base station.
Security remains a para mount concern amidst vast data
generation, leading to extensive research focusing on trade-
offs between power consumption, delay, and latency [3]. A
novel intrusion detection system (IDS) for WSNs utilizing a
deep learning model in which the system optimally selects
cluster heads (CH) based on energy, delay, and distance
constraints using the self-improved sea lion optimization

(SI-SLnO)model. A multidimensional two-tier hierarchical
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trust model evaluates the trust of CH and nodes, while deep
learning-based intrusion detection employs optimized neural
networks trained via the SI-SLnO algorithm. The approach
demonstrates superiority over existing techniques through
extensive evaluation [4]. The surveyed the related works and
developed a deep learning-based intrusion detection systems
trained on WSN-DS data set, detecting Black hole, Gray
hole, Flooding, and Scheduling attacks. It was found that the
traditional intrusion detection systems are less effective

against evolving attacks like denial of service (DoS) [5].

A Deep Learning-based Defense Mechanism, for light
weight DoS detection during Data Forwarding Phase (DFP).
Extensive simulations demonstrate DLDM's effectiveness in
accurately isolating adversaries, achieving high detection
rates, throughput, and packet delivery ratio, while reducing
energy consumption and false alarms [6]. deep neural
network (DNN) for intrusion detection systems, leveraging
cross-correlation to select optimal features and construct a
DNN structure for intrusion detection. Experimental results
demonstrate superior performance of the proposed DNN
compared to conventional machine learning models like
support vector machine, decision tree, and random forest,
effectively identifying attacks in wireless sensor networks
[7]. A proposed IDS framework using machine learning
algorithm for WSNs, offering flexibility across various
attack types and automating detection model creation from
training data, there by reducing manual labour [§]. A novel
routing scheme for WSNs combining block chain, meta-
heuristic, and deep learning algorithms to counter diverse
cyber-attacks. Block chain handles routing information
dissemination, while Salp Swarm Optimization achieves
optimal routing. Deep Convolutional Neural Network
predicts routing variations and facilitates optimal decisions.
Method improved efficiency, evaluated on latency, energy
consumption, and through put metrics, and compared with
existing methods like particle swarm optimization and
reinforcement learning-based neural network for delay ratio
[9]. A protocol emphasizing data availability along side
confidentiality, integrity, and authentication utilizing
blowfish encryption, EAX mode, and RSA algorithm, out
performing existing protocols in Energy Efficiency, Network

Lifetime, Average Delay, and Packet Delivery Ratio [10].
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A block chain-based security architecture for data
storage and access control, alongside a node
synchronization energy optimization algorithm
showingimproved network lifetime, latency, and
throughput, making it reliable for resource-constrained
WSNs [11]. The enhanced WSN security and reliability
using block chain, implementing Q-tables for routing data
collection and SHA256 encryption for data security.
Assessing resilience against Sybil attacks, Proof of Work
(PoW) outperforms Proof of Authority (PoA) in
maintaining block chain integrity, despite higher
computational costs. This highlights the efficacy of
different consensus algorithms in securing block chain-
integrated WSNs against attacks [12]. The integrated block
chain into [oT-WSN architectures to boost security, privacy,
and scalability, leveraging decentralized control and
cryptographic features. While acknowledging challenges
like increased computational overhead and interoperability
issues [13]. An integrated block chain techniques with
wireless sensor nodes to enhance cyber security in smart
grid systems, addressing vulnerabilities high lighted by
recent cyber-attacks. Leveraging a Proof of Authority(PoA)
Ethereum Block chain frame work, the study evaluates
performance across various SCAD A network topologies,
aiming to bolster data integrity, transmission reliability, and
trustworthiness in smart grid operations [ 14]. A lightweight
yet highly secure node validation method by integrating
Block chain with WSN, addressing security concerns
without excessive resource usage. Through Block chain-
assisted Node Validation (Block Node) and Valid Cluster
Formation (VCF) techniques, it ensures high-level security
while maintaining energy efficiency. Experimental results
from NS-3.25 simulations demonstrate superior
performance in security, encryption, delay, energy

consumption, delivery ratio, and throughput [15].

A block chain-based authentication protocol for WSNs
to address security vulnerabilities such as ID spoofing.
Leveraging block chain's features, including cryptographic
security and immutability, the protocol enhances data
authentication in WSNs. The system model incorporates

sensor nodes, cluster nodes, base stations, and private block
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chain networks [16]. A secure attack localization and
detection in IoT-WSNs, utilizing block chain-based
encryption and trust evaluation. Federated machine
learning is enhanced for data security by identifying and
classifying malicious nodes [17]. A block chain-based
scheme for registration, data sharing, mutual
authentication, and non repudiation in loT-WSNs utilizing a
consortium block chain for identity storage. Coordinators
execute smart contracts, aiding sensor nodes in
authentication and data processes. Ambient data storage
employed an Al-based Inter Planetary File System (IPFS),
while the Stellar consensus protocol enhances transaction
throughput [18]. A block chain-based architecture to
address cyber security issues in IoT devices, offering
distributed data storage, immutability, and enhanced
security. This architecture enables traceability and
efficiency, ensured high performance and scalability for
massive data storage, accommodating diverse WSN
communication protocols seamlessly [19]. A Double Lined
Hash Blocks (DLHB) block chain system enhances
healthcare security via Advanced Encryption Standard
(AES) encryption, Prime Padding Rivest Cipher Key
Generation (PP- RCKG), and Shuffle Structure Chain Link
(SSCL), ensuring data integrity and confidentiality.
Utilizing Master Node Aggregation (MNA) and master
node authentication, it decentralizes communication,
improving security verification and validation. WSNs are
essential for various applications, but they are vulnerable to
attacks from malicious nodes. These attacks can
compromise the integrity, confidentiality, and availability
of data, limiting the effectiveness and reliability of WSNs
[20]. The objective of this research is to enhance the security
and performance of WSNs using Deep Learning (DL) and
privacy-preserving techniques. The focus is on addressing
evolving attack patterns, ensuring real-time adaptation,
leveraging diverse network data, and preserving privacy.
Main objective includes:

< Enhancing malicious node detection in WSNs using
federated deep learning

% Evaluating the efficiency of federated learning with
LEACH for malicious node classification in WSN

security
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This paper is organized into five sections. The
introduction outlines the essentials of wireless sensor
network security, including routing protocols, network size
scalability, malicious node detection processes, and the
application of machine learning for accurate node
classification models. The literature review examines
recent research and existing studies on WSN Security,
focusing on deep learning approaches and the utilization of
block chain technology to provide context for the proposed
methodology. The methodology section details the
federated deep learning model for node classification,
explaining the various stages involved, such as feature
extraction, federated learning, and anomaly detection. The
results and analysis section presents the experimental
outcomes achieved by the federated learning model on
various benchmark data-sets and assesses its performance
using relevant metrics. Finally, the conclusion section
summarizes the key findings of the research, evaluates the
effectiveness of the proposed federated learning model for
node classification in wireless sensor networks, and

identifies potential areas for future exploration.

III. METHODOLOGY

Proposed system is designed for anomaly detection in a
network of sensor nodes. Sensor data is collected and pre-
processed by the nodes themselves. Features are then
extracted and used to train a deep learning model locally on
each node for real-time adaptation. To improve the model
and protect privacy, federated deep learning allows nodes to
collaboratively train the model without sharing raw data.
The base station aggregates encrypted data while
maintaining confidentiality and uses trust scores stored on a
block chain to make routing decisions. Finally, the base
station monitors the network performance and stores data
securely. Figure 1 depicts the overall architecture of the

proposed method.

3.1.Sensor Nodes
Sensor nodes act as the data collectors in this proposed
system, gathering raw measurements like temperature or

pressure from their surroundings. This data can be noisy or
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inconsistent, so preprocessing techniques like filtering and
scaling clean and prepare it for analysis. In feature
extraction process the key characteristics of both the sensor
nodes and data are extracted for anomaly detection. Each
sensor node integrates the process of deep learning model
that continuously learns from this processed data with these
features, adapting to real-time changes. While local training
offers this real-time benefit, sharing knowledge across
nodes can further improve the model's performance.
Federated learning tackles this challenge by enabling

collaborative training without compromising privacy.
N\

Routing all nodes
using LEACH

v

Federated learning
model

v

Malicious Node
Detection

v

Routing
legitimate nodes
using LEACH

Figure 1: Architecture of the proposed work

~

3.2.Feature Extraction

In wireless sensor network, the malicious nodes can be
detected by extracting various features from the network
data by considering traffic, behavioral, communicational

and resource- based features.

3.2.1. Traffic features
In WSN, traffic features help us detect potential security
threats. Differences in the usual packet size of a specific

data type indicate it's an attempt to inject malicious code or
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manipulate data by breaking communication or attacking
vulnerabilities. Similarly, each node in a WSN has a
common rate of data or packet transmission. Unusual
changes in this rate like sudden increase or decrease signify
that the node is malfunctioning or dropping packets to
interrupt communication. Furthermore, Sensor nodes
usually follow established routing protocols to send data
towards the base station. Sudden alterations in the direction
of packet flow are a sign that either routing protocols are
disrupted or communications are being spied on. Lastly,
Unusual changes in a node's energy consumption compared
to its typical usage patterns could suggest that the node is

performing malicious activities that require more energy.

3.2.2. Communicational features

Variations between a node's described list and the
reports of surrounding nodes might be an attempt to
manipulate its neighbor list to isolate other nodes, disrupt
routing protocols, or launchtargeted attacks. A severe issue
is indicated when there's a consistent lack of
acknowledgments (ACK's) from a specific node because
when a node sends data, it expects an acknowledgment
signal from the receiver confirming successful reception. A
sudden increase in control messages from a specific node is
an attempt to disrupt routing protocols by sending excessive
route requests, sending fake signals to confuse other nodes,

or launch a denial-of-service attack.

3.2.3. Behavioral features

Anode that constantly neglects to participate in network
activities like routing data, responding to queries, and
maintaining network health is considered suspicious. Their
lack of participation leads to communication disruption.
Another behavioral feature to consider is Clustering
Behavior, particularly in cluster-based WSNs. Nodes that
don't follow already established clustering protocols or
display abnormal behavior within a cluster. Then, the lack

of clustering behavior could be malicious.
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3.2.4.Resource-based features

If a node's remaining energy level is significantly lower
than its neighboring nodes, it could be compromised, which
may be exploited by attackers to launch malicious activities
until the node's battery runs out. If their memory usage
suddenly increases, it could mean there's malicious
software on the node. Monitoring memory usage, unusual
spikes can be marked for further investigation.

By analyzing a combination of these features and
employing techniques like federated deep learning
algorithms, WSNs can be made more robust against
malicious nodes. The specific features chosen will depend
on the network's configuration, security requirements, and

the type of data being collected.

3.3.Federated Learning
The process of node classification in network security

begins with an initial list that incorporates both legitimate
nodes (L {1,1,...,1}) and malicious nodes (M

{m,m,....m,}) The malicious nodes can be classified
through network deployment information and federated
learning techniques used in anomaly detection. In the initial
step, various features (F' = {f.f,...../.}) are extracted from
the network data (X) to provide a comprehensive
understanding of node behavior and its characteristics.
These features encompass activity-based (4i),
communication-based (Ci), and traffic-based patterns (7i)
and resource consumption metrics (RCi) After analyzing
the data from all nodes including both legitimate nodes and
malicious nodes, a detailed view of network activity is
obtained, allowing for a sophisticated understanding
beyond the initial malicious node classification. Figure 2
depicts the entire architecture of the proposed federated

learning system.
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Routing with LN’s and MN'’s using LEACH

Federated learning based Malicious Node screening process

Malicious Nodes

Legitimate Nodes

Deep Learning Model

A

Detection Process

Legitimate Nodes

I

Routing with LN’s using LEACH

The nodes responsible for sending
and receiving data are authenticated
and tracked on the block chain

Figure 2 : Architecture of the proposed federated learning system

99



Karpagam JCS Vol.19 Issue 03 May - Jun 2024

The proposed federated learning model is helpful in the
node classification process that ensures data privacy.
Initially, a cluster head distributes a base model to all sensor
nodes. A global model with initial weights (6,) is distributed
to participating nodes. All sensor nodes (S,) then train a local
copy of this model (f'(X))) using their private network data
(X)), which remains private on the sensor. Crucially, the raw
data is never shared. Instead, each node creates an update
(A6) that captures the differences between the local data and
the global model. These updates, essentially refined
versions of the model based on the node's specific

information, are then sent back to the cluster head.
Agi = VQUQ(XL), t[) (1)

Where, L be the loss function and ¢, be the target. The
cluster head aggregates these updates from all nodes (2A6,),
effectively combining their learnings without exposing the
raw data. Then, this combined knowledge is to improve the

global model (), which is distributed to the nodes again.

8t+1:8t+ZAQi (2)

Where, t be the current training iteration. This iterative
process of local training, update sharing, and global
improvement continues, allowing the model to
continuously learn and refine its ability to classify
legitimate and malicious nodes while keeping all sensor
data confidential. Following this, the federated deep
learning model is trained using the extracted features.
Federated learning facilitates collaborative model training
across multiple nodes while preserving data privacy and
scalability. The model learns to identify underlying patterns
and correlations in the extracted features that classifies the
legitimate nodes and malicious nodes, continuously
updating its knowledge based on new data. The training data
for the federated deep learning model consists of labeled
data points, where each data point represents the features
extracted from a specific node and is labeled as either
"legitimate" or "malicious." By integrating initial
classification, feature extraction, and federated deep
learning, this comprehensive approach enables the

development of a robust and adaptive system for effective

node classification, enhancing network security and
resilience against malicious activities. Once trained the
model have the ability to identify the malicious node from the
unseen data. Finally, the trained model can be used
classifying the anomaly nodes in the wireless sensor
network. Following this, list of legitimate nodes can be

registered in the base station for further process.

3.4. Anomaly Detection

The federated deep learning model can classify the five
classes: legitimate node (LN) and four malicious node types
(MN-1, MN-2, MN-3, MN-4). The network consists of three
convolutional layers for feature extraction, followed by
activation layers to introduce non-linearity. Two pooling
layers are included for dimensionality reduction. Finally,
fully-connected layers perform high-level reasoning and
classification, with the final layer having an output size of 5
and using a Softmax function to assign probabilities to each
class. The node is then classified based on the class with the

highest probability.

The anomaly detection of the proposed model is
described in Figure 3. Initially, a network is established with
X number of sensor nodes (S {s,,s,, ...., s.}), including cluster
heads (CHs) and a base station (BS). Sensor nodes collect
data from their environment and transmit it to the cluster
head for further processing. These nodes are organized into
clusters (C {c,c,, ...., ¢}), where k is the number of clusters.
Routing within the network is facilitated by the LEACH

protocol.

1
T(s) = {p/(l —p=*(r modB)) ifsi€ CH(t—1) @)

P otherwise

Where, p be the desired percentage of cluster heads, » be
the current round number and (#-1) is the set of cluster heads
in previous round (#-1). The cluster heads (CH, € C)
aggregate and process the collected data before forwarding it

to the base station.
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Algorithm — Anomaly_Detection()

Step 1: Initialization:

% Deploy sensor nodes in the environment.
% Set desired cluster head percentage (p).
% Initialize round number (r=0).

Step 2: Cluster Head Selection:

23 Foreach sensornodes,

- Calculate threshold for becoming a cluster

head in current round:
1
_ 1 - d— ifsi€ CH(t—1
TGs) = (P/( p * (rmo D)) ifsi€ CH(t—1)
p otherwise

- Generate arandom number between 0 and 1
Ifthe random number is less than T(s;), node
s, becomes a cluster head for the current
round.
23 Update the set of cluster heads C (¥).

% Increment round number (» = r+1).

Step 3: Data Collection and Aggregation:

K3
<

Sensor nodes transmit their data to their assigned
cluster head.
% Cluster heads aggregate and pre-process the

collected data.

Step 4: Federated Learning:

L Cluster heads perform local training on the
federated deep learning model using their
aggregated data.

% Local models are uploaded to the base station
securely.

% The base station aggregates the local models to

update the global model.

3
o<

The updated global model is distributed back to

the cluster heads.

Step 5: Anomaly Detection:
% Cluster heads use the updated global model to

classify the received data from sensor nodes.

% Classification outputs:
- Legitimate node (LN)
- Malicious node type (MN -1i)

24

3 Ifa sensornode is classified as

MN -i(i=1,2,3,4),itis flagged as anomalous.

In wireless sensor networks, malicious nodes are
identified using federated deep learning models. Malicious
node type such as backdoors, DoS, fuzzers, and shell code are
classified using the benchmark UNSW-NBI15 dataset.
Malicious node type such as smurf, neptune, backdos, and
spy were classified using the benchmark KDDCUP99
dataset. Comparative analysis reveals that the combination
of federated learning with the LEACH protocols
outperforms the deep learning approach in malicious node
detection. Network performance is evaluated before and
after implementing malicious node detection, focusing on

metrics such as throughput, energy consumption, and delay.

Sensor |. Training
Nodes ‘ Data

> | | Anomaly I|
Feature Extraction Detection Resul

Deep Learning
Model

Figure 3 : Anomaly Detection of the proposed model

3.5. Calculating Transmission Time and Energy

In our proposed model, the uplink channel power gain

from the x-th client to the access point is represented as:

h(s) = hopx(s)(do/dx)¥ C))

Where, 4, is the path loss constant, d  signifies the
distance from the x-th client to the access point, d, represents
the reference distance, p (t) indicates the power gain from the
small- scale fading channel between the x-th client and the
access point during the s-th communication round. (d, /d, )"
represents the large-scale path loss with v being the path loss
factor which is determined by the distance. The below
equation 5 describes the time taken for the x-th client to

transmit data to the base station in the s-th round.
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Ay ix(5)

PP .(s) = P LN (3)

Blogx( BPy

B represents system bandwidth, (s) represents the
transmission power of the x-th node during s-th

communication round, P, represents noise power spectral

density and ax represents the number of bits transmitted by
x-th node. In addition, Equation 6 describes the energy
consumed by the x-th node in the s-th communication
round.

Ty (s)ay ix(s)
1+T‘s|h_‘-45>)

BPqg

z'P.(s) = (6)

Blog-_.(

IV. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Dataset Description

The UNSW-NBI15 dataset [21] contains 49 features
extracted using Argus and Bro-IDS tools. The dataset
primarily consists of two record categories: normal and
attack traffic. Attack records are further classified into nine
distinct families based on the nature of the attacks. That
includes analysis, backdoors, DoS, exploits, fuzzers,
generic, reconnaissance, shellcode and worms.
In KDDCUP99 dataset [22] the connections are classified as
either normal or belonging to a specific attack category.
There are four main attack types: DOS, R2L, U2R, and
probing. Each connection record is relatively small, around
100 bytes. The training data includes normal class and 24
different attack types. They are back dos, buffer overflow,
ftp_write, guess_passwd, imap, ipsweep, land, loadmodule,
multihop, neptune, nmap, perl, phf, pod, portsweep, rootkit,
satan, smurf, spy, teardrop, warezclient, and warezmaster.
Connection records are dissected into three distinct feature
sets for analysis: basic features capture fundamental details
of individual TCP connections, content features leverage
domain knowledge to analyze the content flowing within a
connection, and traffic features are calculated based on
network traffic patterns observed over a two-second

window.

4.2. Results and Performance Analysis

Calculation of Training and Testing Loss, as well as
Training and Testing Accuracy, for the UNSW-NBI15

dataset is achieved by repeating epochs until optimal values

are obtained. The performance of the federated learning has

been measured and tabulated in Table 1.

Table 1 : Comparative Analysis of the Training and Testing
loss, Training and Testing accuracy obtained from the
UNSW-NBI15 dataset

Epocns | T | Tosog | T | T
1 0.198 0.102 0.905 0.901
2 0.133 0.119 0.947 0.927
3 0.127 0.118 0.953 0.905
4 0.174 0.131 0.971 0.963
5 0.152 0.107 0.942 0.932
6 0.121 0.164 0.922 0.907
7 0.199 0.102 0.918 0.965
8 0.117 0.143 0.934 0.929
9 0.181 0.105 0.965 0915
10 0.176 0.132 0.956 0.942
Overall 0.1578 0.1223 0.9413 0.9286

The overall average of the training and testing accuracy
are 0.9413 and 0.9286 respectively. The overall average of
the training loss and testing loss identified during the epochs
are 0.1578 and 0.1223 respectively. Figure 4 represents the
results obtained from the epochs, included the representation
of training and testing accuracy, allow us to make informed
decisions about the dataset's performance. By studying these
findings, areas for improvement and optimize the

performance of UNSW-NB15 dataset can be identified.
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Figure 4 : Representation of the results of training
accuracy, and testing accuracy obtained by the epochs from
the UNSW-NBI1S5 dataset
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In Figure 5, the training and testing loss obtained for
multiple epochs are seen. The average loss value obtained
during these epochs is also calculated. By analyzing these
results, analysts can gain valuable insights into the UNSW-
NBI15 dataset and identify areas where improvements can
be made. Therefore, it is crucial to carefully review these
findings to optimize the performance of UNSW-NBI15
dataset.
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Figure 5 : Representation of the results of training loss,
and testing loss obtained by the epochs from the UNSW-
NB15 dataset

Figure 6 displays the sensitivity and specificity values
for a UNSW-NBI15 dataset by a federated deep learning
classifier across different categories and general

performance.
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Figure 6 : Performance Analysis of federated deep
learning classifier based on sensitivity and specificity for
UNSW-NBIS5 dataset

Sensitivity represents the true positive rate (TPR) and
specificity represents the true negative rate (TNR). The
overall average values for sensitivity and specificity of class
0 (0.96, 0.9466), class 1 (0.9528, 0.945), class 2 (0.9512,
0.95006), class 3 (0.9506, 0.9564), and class 4 FPR(0.9572,
0.9602). Figure 7 displays the sensitivity and specificity
values of a federated deep learning classifier for KDDCUP99

dataset and their overall performance.
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Figure 7 : Performance Analysis of federated deep learning
classifier based on sensitivity and specificity for
KDDCUP99 dataset

Based on the rate of TPR and TNR, The overall average
values for sensitivity and specificity of class 0 (0.9426,
0.9366), class 1 (0.9348, 0.9256), class 2 (0.9336, 0.9366),
class 3 (0.9346, 0.9484), and class 4 (0.9432, 0.9446). The
calculation of the training and testing loss, as well as the
training and testing accuracy, for the dataset KDDCUP99 is
done by repeating epochs until optimal values are obtained.
The performance of the federated learning has been

measured and presented in Table 2 for further comparative

analysis.
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Table 2 : Comparative Analysis of the Training and

Testing loss, Training and Testing accuracy obtained from

the KDDCUP99 dataset
epocts| T | Tone | T | T
1 0.111 0.128 0.924 0.934
2 0.149 0.132 0.943 0.912
3 0.127 0.116 0.953 0.931
4 0.182 0.154 0.975 0.926
5 0.136 0.128 0.913 0.934
6 0.175 0.192 0.935 0.951
7 0.151 0.167 0.961 0.913
8 0.125 0.103 0.927 0.952
9 0.147 0.119 0.945 0.934
10 0.162 0.132 0.978 0.922
Overall| 0.1465 0.1371 0.9454 0.9309

The overall average of the training accuracy and testing
accuracy are 0.9454 and 0.9309, respectively. The overall
average of the training loss and testing loss identified during
the epochs are 0.1465 and 0.1371, respectively. Figure 8
represents the results obtained from the epochs, included the
representation of training and testing accuracy, allow us to
make informed decisions about the dataset's performance.
By studying these findings, areas for improvement and
optimize the performance of KDDCUP99 dataset can be
identified.

0.98

¥ 1 Training accuracy Testing accuracy

Figure 8 : Representation of the results of training
accuracy, and testing accuracy obtained by the epochs
from the KDDCUP99 dataset

In Figure 9, the training and testing loss obtained for
multiple epochs are seen. The average loss value obtained
during these epochs is also calculated. By analyzing these
results, analysts can gain valuable insights into the UNSW-
NBI1S5 dataset and identify areas where improvements can be
made. Therefore, it is crucial to carefully review these
findings to optimize the performance of KDDCUP99
dataset. Figure 10 shows the delay that occurs in the network

due to the presence of malicious nodes.

0.19

0.18 /\

AN

017 / . »
0.16 ® /
015 /\ / \‘.’/ ‘\\ /’

0'14 / \! \d

. ./

0.12

==®= ' Training Loss Testing Loss

Figure 9 : Representation of the results of training loss, and
testing loss obtained by the epochs from the KDDCUP99

dataset
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Figure 10 : Delay using LEACH and Federated Learning
using LEACH

When using LEACH for routing, the detection of
malicious nodes is not performed, which results in longer
time for data transmission. Malicious nodes are detected and
removed using Federated Learning using LEACH then
routing is performed in the presence of legitimate nodes only.
As a result, delay is minimized. From the figure 10, it is
observed that the LEACH using Federated Learning is more

accurate in detecting malicious nodes compared to LEACH
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alone. Figure 11 shows the total throughput obtained from
the network in terms of rounds using LEACH and Federated
Learningusing LEACH.
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Figure 11 : Throughput using LEACH and Federated
Learning using LEACH

In LEACH protocol, data packets are typically
transmitted with the highest throughput when no malicious
nodes are presented in the network. However, when
federated learning isintegrated with LEACH for identifying
and eliminating malicious nodes, routing occurs only
among legitimate nodes, which can lead to a reduction in

overall throughput.

V. CONCLUSION

In conclusion, this study presented a novel anomaly
detection system for Wireless Sensor Networks (WSN5s)
that prioritizes real-time adaptability and data privacy. The
system leverages the power of federated deep learning,
enabling sensor nodes to collaboratively train models for
efficient anomaly detection without compromising raw data
privacy. Furthermore, the Base Station plays a crucial role in
secure data aggregation, leveraging trust scores on a
blockchain for optimized routing and ensuring secure data
storage. This comprehensive approach offers a promising
solution for enhancing the security and adaptability of

WSNs in various applications.
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